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Abstract— Robotic fabric manipulation is challenging due
to the infinite dimensional configuration space, self-occlusion,
and complex dynamics of fabrics. There has been significant
prior work on learning policies for specific fabric manipulation
tasks, but comparatively less focus on algorithms which can
perform many different tasks. We take a step towards this
goal by learning point-pair correspondences across different
fabric configurations in simulation. Then, given a single demon-
stration of a new task from an initial fabric configuration,
these correspondences can be used to compute geometrically
equivalent actions in a new fabric configuration. This makes
it possible to define policies to robustly imitate a broad set of
multi-step fabric smoothing and folding tasks. The resulting
policies achieve 80.3% average task success rate across 10
fabric manipulation tasks on two different physical robotic
systems. Results also suggest robustness to fabrics of various col-
ors, sizes, and shapes. See https://tinyurl.com/fabric-
descriptors for supplementary material and videos.

I. INTRODUCTION

Robot fabric manipulation has applications in folding
laundry [4, 17, 25, 46], bed making [37], surgery [8, 38,
42, 43], and manufacturing [27, 45]. However, while robots
are able to learn policies to manipulate a variety of rigid
objects with increasing reliability [7, 14, 20, 22, 28], learning
such policies for manipulating deformable objects remains
an open problem due to difficulties in sensing and control.
While there is significant prior work on geometric [1, 23, 35,
46] and learning based approaches [36, 37, 47] for fabric
manipulation, these approaches often involve designing or
learning task-specific manipulation policies, making it difficult
to efficiently reuse information across tasks.

In this work, we leverage recent advances in dense keypoint
learning [7] to learn visual point-pair correspondences across
fabric in different configurations. Then, given a single offline
demonstration of a fabric manipulation task from a given
configuration, we utilize the learned correspondences to
compute geometrically equivalent actions to complete the
task on a similar fabric in a different configuration. For
example, a human might provide a sequence of actions that
would fold a T-shirt when it is placed neck up in a smoothed
configuration. However, when the robot is deployed, it may
encounter a different T-shirt whose color, size and pose
differ from the T-shirt used for the demonstration. Learning
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Fig. 1: We use learned visual correspondences across different fabric
configurations to perform a variety of fabric manipulation tasks on the
ABB YuMi (top) and the da Vinci Research Kit (bottom). Given a
single demonstration of smoothing or folding, the robot uses the learned
correspondences to compute geometrically equivalent actions for fabric of
different color and in different initial configurations. This enables robust
one-shot imitation learning of tasks that involve smoothing then folding.

visual correspondences that are invariant across these fabric
attributes provides a powerful representation for defining
policies that can generalize to these variations.

We extend work by Sundaresan et al. [41], which leverages
dense object descriptors [7] to learn visual correspondences
for rope using synthetic depth data in simulation. These
correspondences are then used to learn new rope manipulation
tasks such as rearrangement or knot tying given a single task
demonstration. We find that similar visual correspondence
learning methods are also effective for learning correspon-
dences between different fabric configurations using task-
agnostic RGB data collected entirely in simulation and can
be used to perform fabric manipulation tasks. Precisely, given
a user demonstration of the task from a given initial fabric
configuration, we leverage the learned visual correspondences
to perform the same task from different initial configurations
by computing geometrically equivalent actions using the
correspondences. This approach has a number of appealing
properties. First, visual correspondences can be learned purely
in simulation without task-specific data and widely applied
to a variety of real fabric manipulation tasks with no further
training. Second, training in simulation enables sufficient data
variety through domain randomization, making it possible to
learn correspondences that generalize to fabrics with different
colors, shapes, and configurations. Third, since perception
and control are decoupled, the same perception module can
be used on different robots with no additional training.

We contribute (1) a framework for learning dense visual
correspondences of fabric in simulation using dense object
descriptors from [7, 41] and applying them to manipulation



tasks on real fabrics with unseen colors, scales, and textures,
(2) a data generation pipeline for collecting images of fabrics
and clothing in Blender [3] and a testbed to experiment
with different manipulation policies on these fabrics in
simulation and (3) physical experiments on both the da Vinci
Research Kit (dVRK) [15] and the ABB YuMi suggesting that
the learned descriptors transfer effectively on two different
robotic systems. We experimentally validate the method on
10 different tasks involving 5 T-shirts and 5 square fabrics of
varying dimensions and colors and achieve an average task
success rate of 80.3%.

II. RELATED WORK

Fabric manipulation is an active area of robotics research [2,
11, 18, 33]. Over the past decade, the research has primarily
been focused on three different categories: perception-based
manipulation, learning-based algorithms in the real world,
and learning-based algorithms in simulation which are then
transferred to real robots.

Traditional Vision-Based Algorithms for Fabric Ma-
nipulation: Much of the prior work on perception-based
deformable object manipulation relies on traditional image
processing techniques to estimate fabric state. This state
estimation is then used to define geometric controllers
which bring the fabric into some desired configuration.
However, due to the generalization challenges faced by these
algorithms, most prior work makes specific assumptions on
the fabric’s initial configurations or requires more complex
robotic manipulators to bring the fabric into a desired starting
configuration. For example, Miller et al. [25] demonstrate
a robust folding pipeline for clothing by fitting a polygonal
contour to the fabric and designing a geometric controller
on top of it, but assume that the initial state of the fabric is
flat. Sun et al. [39, 40] perform effective fabric smoothing by
estimating the wrinkles in the fabric, but condition on a near-
flat starting fabric. Other work relies on “vertically smoothing”
fabrics using gravity [4, 16, 17, 23, 26] to standardize the
initial configuration and to expose fabric corners before
attempting the task, which is difficult for large fabrics or
single-armed robots.

Learning-Based Algorithms in the Real World: More
recent approaches have focused on end-to-end learning of
fabric manipulation policies directly on a real system, but
these approaches can fail to generalize to a variety of fabrics
and tasks due to the high volume of training data required.
For example, Ebert et al. [5] use model-based reinforcement
learning to learn fabric manipulation policies which generalize
to many tasks, but require several days of continuous data
collection on a real physical system and perform relatively
low precision tasks. Jia et al. [12, 13] show impressive
collaborative human-robot cloth folding under the assumption
that fabric has already been grasped and is in a particular
starting configuration, and Schulman et al. [35] demonstrate
deformable object manipulation while requiring task-specific
kinesthetic demonstrations. In follow-up work, Lee et al.
[19] consider many of the same tasks as in this paper and
demonstrate that policies can be learned to fold fabric using

reinforcement learning with only one hour of experience
on a real robot. In contrast, we learn entirely in simulation
and decouple perception from control, making it easier to
generalize to different fabric colors and shapes and flexibly
deploy the learned policies on different robots without further
learning.

Sim-to-Real Learning-Based Algorithms: Due to the
recent success of sim-to-real transfer [32, 44], many recent
papers leverage simulation to collect large amounts of training
data, which is used to learn fabric manipulation policies.
Seita et al. [36, 37] and Wu et al. [47] address the smoothing
task from [39] but generalize to a wider range of initial
fabric states using imitation learning (DAgger [31]), and
reinforcement learning (Soft Actor-Critic [9]) respectively.
Similarly, Matas et al. [24] learn fabric folding policies
by using deep reinforcement learning augmented with task-
specific demonstrations. However, these works learn policies
that are specialized only to fabric smoothing [36, 37]
and folding [47] respectively. In follow-up and concurrent
work, Hoque et al. [10] and Yan et al. [48] use simulation
to train fabric manipulation policies using model-based
reinforcement learning for multiple tasks. In contrast, we
leverage simulation to learn visual representations of fabric
to capture its geometric structure without task-specific data or
a model of the environment and then use this representation
to design intuitive policies for several tasks from different
starting configurations.

Dense Object Descriptors: We learn visual representa-
tions for fabric by using dense object descriptors [7, 34],
which were shown to enable task oriented manipulation
of various rigid and slightly deformable objects [7]. This
approach uses a deep neural network to learn a representation
which encourages corresponding pixels in images of an object
in different configurations to have similar representations in
embedding space. Such descriptors can be used to design
geometrically structured manipulation policies for grasp-
ing [7], assembly [49], or for learning from demonstrations [6].
Sundaresan et al. [41] extend this idea to manipulation
of ropes, and demonstrate that deformation-invariant dense
object descriptors can be learned for rope using synthetic
depth data in simulation and then transferred to a real physical
system. Sundaresan et al. [41] then use the learned descriptors
to imitate offline demonstrations of various rope manipulation
tasks. In this work, we apply the techniques from [41] to
learn descriptors which capture geometric correspondence
across different fabric configurations from synthetic RGB
images and use them for 2D fabric manipulation.

III. PROBLEM DEFINITION

A. Assumptions

We assume a deformable object is on a planar workspace in
initial configuration ξ1 with overhead RGB image observation
I1 := I1(ξ1) ∈ RW×H×3. As in prior work [36, 47], we focus
on fabric manipulation tasks that can be completed by a
sequence of pick and place actions. Precisely, each action
involves grasping the fabric at a pick point, pulling to a place
point without changing the orientation of the end-effector,



and releasing the fabric. We assume that the pick point and
place point are both visible in the camera frame and that
the camera intrinsics and extrinsics are known at test-time.
We additionally assume access to a single demonstration of
each task in the form of a sequence of pick and place actions
from some arbitrary initial fabric configuration ξ1. These
demonstrations can be collected offline, such as through a
GUI where a user clicks on an image of fabric to indicate
pick and place point pixels. However, the fabric used to create
the instruction does not have to be of the same color, the
same size or in the same initial configuration as the fabric
the robot sees at test time. The only requirement is that the
fabric be of a similar geometry. For example, T-shirts can be
compared to other instances of T-shirts, but not to pants or
long-sleeved shirts.

B. Task Definition

Define the action at step j as

a j = ((xg,yg) j,(xp,yp) j) (III.1)

where (xg,yg) j and (xp,yp) j are the pixel coordinates of a
grasp point on the fabric and place point respectively in image
I j at time j. The robot grasps the world coordinate associated
with the grasp point and then moves to the world coordinate
associated with the place point without changing the end
effector orientation. This causes the fabric located at (xg,yg) j
in the image to be placed on top of the world coordinate
associated with (xp,yp) j with the same surface normals as
before. In future work, we will investigate how to execute
more complex actions that result in reversed surface normals,
which requires a rotation motion during the action. We are
given a sequence of actions (a j)

n
j=1 executed on a fabric

starting in configuration ξ1 and corresponding observations
(I j)

n
j=1 where I j is the observation of the fabric before action

a j is taken. Then at test-time, a similar object is dropped
onto the surface in a previously unseen configuration and the
goal is to generate a corresponding sequence of actions for a
fabric in some previously unseen configuration. Specifically,
the robot generates a new sequence of actions:

(
a′j
)n

j=1
=
(

dI j→I′j
(xg,yg) j, dI j→I′j

(xp,yp) j

)n

j=1
(III.2)

for j ∈ {1, . . . ,n} where dI j→I′j
: R2 → R2 is a function

which estimates the corresponding point (x′,y′) j in I′j given
a point (x,y) j in I j. This function is difficult to compute
directly from images in general, and even more so for images
of highly deformable objects due to their infinite degrees
of freedom and tendency to self-occlude. Thus, we leverage
dense object descriptors [7] to approximate dI j→I′j

for any I j

and I′j, as described in Sections V and VI.

IV. SIMULATOR

We use Blender 2.8, an open-source simulation and
rendering engine [3] released in mid-2019, to both create
large synthetic RGB training datasets and model the fabric
dynamics for simulated experiments using its in-built fabric

Fig. 2: Fabric Meshes: Examples of the meshes generated in Blender for
both square cloth (left) and t-shirts (right). The ground-truth vertices are
highlighted in the second and fourth columns.

solver based on [29, 30]. We simulate T-shirts and square
fabrics, each of which we model as a polygonal mesh made
up of 729 vertices, a square number we experimentally tuned
to trade-off between fine-grained deformations and reasonable
simulation speed. See Figure 2 for an illustration. Each vertex
on the mesh has a global coordinate which we can query
directly through Blender’s API, allowing for easily available
ground truth information about various locations on the mesh
and their pixel counterparts. We can also simulate finer-
grained manipulation of the mesh including grasps, pulls,
and folds. See the supplement for further details on how we
perform manipulation and experiments in simulation.

V. DENSE SHAPE DESCRIPTOR TRAINING

A. Dense Object Descriptor Training Procedure

We consider an environment with a deformable fabric on a
flat workspace and learn policies that perform smoothing and
folding tasks. The policies are defined using learned point-
pair correspondences between overhead images of the fabric
in different configurations. We generate deformation-invariant
correspondences by training dense object descriptors [7, 41]
on synthetically generated images of the fabric in different
configurations.

In Florence et al. [7], an input image I is mapped to
a descriptor volume Z = fθ (I) ∈ RW×H×D, where each
pixel (i, j) has a corresponding descriptor vector Zi, j ∈ RD.
Descriptors are generated by a Siamese network fθ and are
guided closer together for corresponding pixels in images and
pushed apart by at least some margin M for non-corresponding
pairs by minimizing a pixel-wise contrastive loss function
during training [7]. Corresponding pairs of pixels represent the
same point on an object. In this work, we also train a Siamese
network to cluster corresponding pixel pairs and seperate
non-corresponding pixel pairs in descriptor space. Since
ground-truth pixel correspondences are difficult to obtain
in images across deformations of a real fabric, we train the
network on synthetic RGB data from Blender (see Section IV),
where perfect information about the pixel correspondences is
available through the global coordinates of the fabric mesh’s
vertices. Note that during training, the sampled image inputs
to the Siamese network are enforced to be of the same fabric
type to ensure valid correspondences. That is, two different
images of T-shirts can be passed into the network, but not a
T-shirt and square fabric. Figure 3 demonstrates the pipeline
for predicting descriptors for correspondence generation. The
learned descriptors can then be used to approximate the
correspondence function dI→I′ described in Section III by (1)
computing the top k pixel matches based on their distance in
descriptor space and (2) computing the geometric median of



Fig. 3: Learning Visual Correspondences: pipeline for training dense object
nets for robot fabric manipulation. Left: we train a dense correspondence net-
work on pairs of simulated fabric images to learn pixel-wise correspondences
using a pixel-wise contrastive loss. Right: we use the learned descriptors
for policy optimization. We can use correspondence to map a reference
action to a new fabric configuration. For example, we show an image of a
wrinkled fabric in “State 2,” and we can use descriptors to figure out the
action needed to smooth the fabric from “State 2” to “State 1.”

these matches in pixel space:

(
(i′′l , j′′l )

)k
l=1 = argmin

(i′1, j
′
1)...(i

′
k, j
′
k)

k∑
l=1

‖ fθ (I)i, j− fθ (I′)i′l , j
′
l
‖2

s.t. (i′n, j′n) 6= (i′m, j′m) ∀m,n ∈ [k]

dI→I′(i, j) = argmin
(i′, j′)

k∑
l=1

‖(i′, j′)− (i′′l , j′′l )‖2

In experiments we find k = 20 gives the most robust
predictions.

B. Dataset Generation and Domain Randomization

To enable generalization of the learned descriptors to a
range of fabric manipulation tasks, we generate a diverse
dataset of initial fabric configurations. The first step simulates
dropping the fabric onto the planar workspace while executing
similar pinning actions to those described in Section IV on
an arbitrary subset of vertices, causing some vertices to fall
due to gravity while others stay fixed. We then release the
pinned vertices 30 frames later so that they collapse on top of
the fabric. This allows us to create realistic deformations in
the mesh. We then export RGB images which serve as inputs
to the Siamese network, pixel-wise annotations which gives
us correspondences, and segmentation masks which allow us
to sample matches on the fabric.

Simulating soft-body animations is in general a computa-
tionally time-consuming process which makes it difficult to
render large datasets in short periods of time. We take steps
toward mitigating this issue by rendering 10 images per drop,
allowing us to collect 10x as much data in the same time
period. In simulation, we found that the test time pixel match
error was unaffected when including these unsettled images of
the fabric in the dataset. We additionally make use of domain
randomization [32, 44] by rendering images of the scene

while randomizing parameters including mesh size, lighting,
camera pose, texture, color and specularity (see supplement
for further details). We also restrict the rotation about the z-
axis to be between (−π/4,π/4) radians to reduce ambiguity
during descriptor training due to the natural symmetry of
fabrics such as squares. To randomize the image background,
we sample an image from MSCOCO [21] and “paste” the
rendered fabric mask on top. For experiments, we generate
one (domain-randomized) dataset, including both T-shirts and
square fabric, and train a single model which we use for all
experiments in Section VII. For reference, generating a single
dataset of 7,500 images, half T-shirts and half square cloth,
with 729 annotations per image takes approximately 2 hours
on a 2.6GHz 6-core Intel Core i7 MacBook Pro.

VI. DESCRIPTOR-PARAMETERIZED POLICIES

As discussed in Section III-B, the robot receives a demon-
stration of the task consisting of actions (a j)

n
j=1 and observa-

tions (I j)
n
j=1. At execution time, the robot starts with the fabric

in a different configuration, and the fabric itself may have a
different texture or color. At time j ∈ [n], the robot observes
I′j then executes π j(I′j) =

(
dI j→I′j

(xg,yg) j, dI j→I′j
(xp,yp) j

)
where dI j→I′j

is defined in Section V-A. We train a single
descriptor network for a variety of tasks and use it to
identify correspondences in different fabric configurations
from those in the supplied in demonstrations. π j then uses
these correspondences to identify semantically relevant pixels
in I′j to generate actions that manipulate these keypoints.

For example, one step of a task could involve grasping the
top-right corner of the fabric and taking an action to place it
in alignment with the bottom-left corner, thereby folding the
fabric. The robot could receive an offline demonstration of this
task on an initially flat fabric, but then be asked to perform
the same task on a crumpled, rotated fabric. To do this,
the robot must be able to identify the corresponding points
in the new fabric configuration (top-right and bottom-left
corners) and define a new action to align them. π j computes
correspondences for the pick and place points across the
demonstration frame and the new observation to generate a
corresponding action for the new configuration.

A. Fabric Smoothing

In the square fabric smoothing task, the robot starts with
a crumpled fabric and spreads it into a smooth configuration
on a planar workspace as in Seita et al. [36]. To complete
this task, we use the approach from [36] and iterate over
fabric corners, pulling each one to their target locations on an
underlying plane. However, while [36] design a policy to do
this using ground-truth knowledge of the fabric in simulation,
we alternatively locate corners on the crumpled fabric using a
learned descriptor network and a source image of a flat fabric
where the corners are labeled. For the T-shirt smoothing task,
we apply a similar method, but instead iterate over the corners
of the sleeves and the base of the T-shirt.



Fig. 4: Fabric Specifications: Images and dimensions of the square fabrics
and shirts we use in experiments.

B. Fabric Folding

The fabric folding task involves executing a sequence of
folds on a fairly smooth starting configuration. For each
folding task, we use a single offline demonstration containing
up to 4 pick and place actions collected by a human through
a simple GUI. The descriptor-parameterized controller is then
executed in an open-loop manner.

VII. EXPERIMENTS

We experimentally evaluate (1) the quality of the learned
descriptors and their sensitivity to training parameters and
(2) the performance of the descriptor-parameterized policies
from Section VI across 10 different fabric manipulation tasks
on two physical robotic systems, the da Vinci Research Kit
(dVRK) [15] and the ABB YuMi. Results suggest that the
learned descriptors and the resulting policies are robust to
changes in fabric configuration and color.

A. Tasks

We consider 10 fabric manipulation tasks executed on a
set of 5 T-shirts and 5 square fabrics in the real world:

1) Single Fold (SF): A single fold where one corner is
pulled to its opposing corner.

2) Double Inward Fold (DIF): Two opposing corners are
folded to the center of the fabric.

3) Double Triangle Fold (DTF): Two sets of opposing
corners are aligned with each other.

4) Double Straight Fold (DSF): The square cloth is folded
in half twice, first along the horizontal bisector and then
along the vertical bisector.

5) Four Corners Inward Fold (FCIF): All four corners are
sequentially folded to the center of the cloth.

6) T-Shirt Sleeves Fold (TSF): The two sleeves of a t-shirt
are folded to the center of the shirt.

7) T-Shirt Sleeve to Sleeve Fold (TSTSF): The left sleeve
of a T-shirt is folded to the right sleeve of the T-shirt.

8) Smoothing (S): Fabric is flattened from a crumpled state.
9) Smoothing + Double Triangle Fold (SDTF): Fabric is

smoothed then the DTF is executed.
10) Smoothing + Sleeve to Sleeve Fold (SSTSF): T-shirt is

smoothed then TSTSF is executed.
All fabrics are varied either in dimension or color according
to Figure 4. Additionally, we execute a subset of these tasks
in simulation. A single visual demonstration consisting of up
to 4 actions is provided to generate a policy which the robot
then tries to emulate in the same number of actions.

Fig. 5: Policy Rollouts: We visualize policy execution on the YuMi for
tasks 2, 3, 4, 5, 6 and 7 as described in Section VII-A. The first four columns
show the folding instructions on some initial fabric and the last four columns
show the corresponding folds executed on novel starting configurations for
a different fabric.

B. Experimental Setup

We execute fabric folding and smoothing experiments on
the dVRK [15] and ABB YuMi robot. The dVRK is equipped
with the Zivid OnePlus RGBD sensor that outputs 1900×
1200 pixel images at 13 FPS at depth resolution 0.5 mm.
The workspace of the dVRK is only 5”× 5”, so we use
only square fabric of the same dimension while varying
the color according to Figure 4. Manipulating small pieces
of fabric into folds is challenging due to the elasticity of
the fabric, so we add weight to the fabric by dampening it
with water. Additionally, we place a layer of 1 inch foam
rubber below the fabric to avoid damaging the gripper. The
YuMi has a 36”× 24” workspace, and since only one arm
is utilized resulting in a more limited range of motion, we
only manipulate at most 12”× 12” pieces of fabric which
we do not dampen. In this setup we use a 1080p Logitech
webcam to collect overhead color images. For the YuMi, we
use both T-shirts and square fabric of varying dimension and
color but go no lower than 9”×9” fabrics due to its larger
gripper. Finally, for both robots, we use a standard pixel to
world calibration procedure to get the transformation from
pixel coordinates to planar workspace coordinates.

For both robots, we follow the same experimental protocol.
We manually place the fabric in configurations similar to
those shown in Figure 2 and deform them by pulling at
multiple locations on the fabric. To obtain image input for the
descriptor networks, we crop and resize the overhead image
to be 485×485 such that the fabric is completely contained
within the image. Although lighting conditions, camera pose
and workspace dimensions are significantly different between
the two robotic systems, no manual changes are made to
the physical setup. We find that the learned descriptors are
sufficiently robust to handle this environmental variability.

We evaluate the smoothing task by computing the coverage
of the cropped workspace before and after execution. For the
folding tasks, as in Lee et al. [19], we consider an outcome



Fig. 6: Full Folding Sequence: The first and second row is a time-lapse of a sequence of 6 actions taken by the YuMi and dVRK respectively, and with
actions overlaid by red arrows, to successively smooth a wrinkled fabric and then fold it according to task 3 in Section VII-A. The third row is a time-lapse
of a sequence of 5 actions taken by the YuMi to complete task 10 in Section VII-A. Here, robot actions are overlaid with blue arrows.

a success if the final state is visually consistent with the goal
image. Conventional quantitative metrics such as intersection
of union between the final state and a target image provide
limited diagnostic information when starting configurations
are significantly different as in the presented experiments.

C. Results

We evaluate the smoothing and folding policies on both
the YuMi and dVRK on square fabrics and T-shirts. Table II
shows the success rates of our method on all proposed tasks
in addition to a breakdown of the failure cases detailed
in Table III. We observe that the descriptor-parameterized
controller is able to successfully complete almost all folding
tasks at least 75% of the time, and the smoothing policies are
able to increase coverage of the cloth to over 83% (Table I).
The execution of the smoothing policy followed by the double
triangle folding policy results in successful task completion
6/10 and 8/10 times on the YuMi and dVRK respectively.
We find that the most frequent failure mode is an unsuccessful
grasp of the fabric which is compounded for tasks that require
more actions. Though this is independent of the quality of
the learned descriptors, it highlights the need for more robust
methods to grasp highly deformable objects.

Task Robot Avg. Start Coverage Avg. End Coverage
S YuMi 71.4±6.2 83.2±8.1
S dVRK 68.4±4.4 86.4±5.2

TABLE I: Physical Fabric Smoothing Experiments: We test the smoothing
policies designed in Section VI on the YuMi and the dVRK. Both robots
achieve an average increase in coverage of 11−22 percent.

VIII. DISCUSSION AND FUTURE WORK
We present an approach for multi-task fabric manipulation

by learning dense visual correspondences entirely in simula-
tion. Experiments suggest that the learned correspondences
are robust to different fabric colors, shapes, textures, and sizes
and make it possible to efficiently learn 10 different fabric
smoothing and folding tasks on two different physical robotic
systems with no training in the real world. In future work,
we plan to explore hierarchical fabric manipulation policies,
where visual correspondences can be used to define coarse
action plans while a closed loop controller can be learned

Task Robot # Actions Success Error A Error B Error C
SF YuMi 1 18/20 2 0 0
SF dVRK 1 20/20 0 0 0
DIF YuMi 2 16/20 3 0 1
DIF dVRK 2 20/20 0 0 0
DTF YuMi 2 14/20 3 2 1
DTF dVRK 2 18/20 0 2 0
TSF YuMi 2 15/20 3 0 2
SDTF YuMi 6 6/10 2 1 1
SDTF dVRK 6 8/10 0 2 0
DSF YuMi 3 15/20 1 1 3
DSF dVRK 3 17/20 1 0 2
FCIF YuMi 4 13/20 5 1 1
FCIF dVRK 4 18/20 0 1 1
TSTSF YuMi 1 17/20 2 0 1
SSTSF YuMi 5 6/10 2 0 2

TABLE II: Physical Fabric Folding Experiments: We test the folding
policies from Section VI on the YuMi and the dVRK. We observe both
robots are able to perform almost all folding tasks at least 75 percent of the
time. The YuMi is able to perform the smoothing then folding task 6/10
times and the dVRK is able to do so 8/10 times.

Error Description
A Gripper picks up more than one layer of fabric

or fabric slips out of gripper
B Pick or drop correspondence error greater than

30 pixels (10% of cloth width) or pick corre-
spondence not on fabric mask

C Unintended physics: resulting fold does not hold
due to variable stiffness of the fabric, friction
of the fabric, or friction of the underlying plane
TABLE III: Failure Mode Categorization

to realize these plans. We will also explore more complex
fabric manipulation tasks, such as wrapping rigid objects, in
which reasoning about fabric dynamics is critical. Finally, we
will also explore the use of a new inverted tweezer gripper
that is more reliable for grasping fabric and addresses the
common Type A error that occurs in this work.
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X. APPENDIX

The appendix is organized as follows:
• Appendix A contains additional details on the fabric

simulator
• Appendix B contains additional details on the experi-

ments conducted in simulation
• Appendix C contains results for simulation experiments
• Appendix D contains details on the pixel-wise contrastive

loss method
• Appendix E shows visualizations of the learned descrip-

tor mappings.
• Appendix F contains images from additional physical

trials executed on the dVRK and YuMi.
• Appendix G conducts a detailed study on the effect of

various hyperparameters on the quality of the learned
visual correspondences.

A. Fabric Simulator Details
We use Blender 2.8 to both create dynamic cloth simula-

tions and to render images of the fabric in different configura-
tions. As can be seen in Figure 2, we are able to retrieve the
world coordinates of each vertex via Blender’s API which we
then use to find ground truth pixel correspondences through
an inverse camera to world transformation. This allows us to
create dense pixel-vertex annotations along the surface of the
fabric which we feed to into the descriptor training procedure.
Figure 9 is a visualization of the learned descriptors and
Figure 7 contains examples of the domain randomized training
data we generate through Blender.

1) Fabric Model: To generate the square cloth in Blender,
we first import a default square mesh and subdivide it three
times to create a grid of 27×27 grid of vertices. We found
that this number of square vertices resulted in a visually
realistic animation in comparison to our real fabrics. We
additionally add 0.02 meter thickness to the cloth to increase
its weight which creates more realistic collision physics. In
order to apply Blender’s in-built cloth physics to the mesh,
we simply make use of the cloth physics modifier through
which we are able modify the parameters shown in Table IV.
Internally, Blender simulates fabric physics for polygonal
meshes with gravitational forces, damping, stiffness, and by
interconnecting the mesh vertices with four types of virtual
springs: tension springs, compression springs, shear springs,
and angular bending springs. Each vertex also exerts repulsive
forces within a self-contained virtual sphere on vertices both
within fabric and in surrounding objects, to simulate self-
collisions and collisions with other objects. We visually tune
the simulator by replaying a fabric folding action while
varying parameters, most notably the friction coefficients
and spring elasticity constants. From observing videos of the
folding actions, we settle on the parameter values specified in
Table IV. A visualization of these steps can be seen in the top
row of Figure 8. To generate the t-shirt mesh, we similarly
import a default square mesh and subdivide it three times,
but also delete all vertices that do not lie in a predefined
t-shirt cutout of the square mesh which results in the bottom
right image of Figure 2.

TABLE IV: Blender Cloth Simulation Parameters
Parameter Explanation Value
Quality Steps quality of cloth stability and collision response 5.0
Speed Multiplier how fast simulation progresses 1.0
Cloth Mass (kg) – 0.3
Air Viscosity air damping 1.0
Tension Springs tension damping/stretching 5.0
Compression Springs compression damping/stretching 5.0
Shear Springs damping of shear behavior 5.0
Bending Springs damping of bending behavior 0.5
Friction friction with self-contact 5
Self-Collision Distance (m) per-vertex spherical radius for repulsive forces 0.015

2) Manipulation with Hook Objects: To implement the
action space defined in Section III, we first deproject the
pixel corresponding to the pick point and map it to the vertex
whose global coordinates are closest in R3 to the pixel’s
deprojected coordinates. We then directly manipulate this
vertex by pinning it and translating it over a sequence of 30
frames. We utilize hook objects to take actions in the Blender
simulator. A hook object attaches to a mesh vertex and exerts
a proportional sphere of influence over the selected vertex
and those in its vicinity, pulling the fabric in the direction of
movement. We simulate a grasp, drag, and drop of the fabric
by assigning a hook object to a fabric vertex, moving this
hook over a series of frames to the deprojected pixel drop
location, and removing the hook object assignment to release
the cloth.

3) Starting Configurations and Actions: To generate varied
starting configurations, we simulate dropping the fabric from
0.2 meters above the workspace while pinning it an arbitrary
subset of the 729 vertices. After 30 frames in the animation,
the pinned vertices are released and are allowed to settle for
another 30 frames. This creates natural deformation in the
cloth and introduces a wide range of starting configurations to
the training dataset. A sequence of these steps is shown in the
second row of Figure 8. When running simulated experiments,
taking pick and place actions requires manipulating the cloth
via hook objects as defined in Section IV. A sequence of
frames throughout the course of an action using a hook object
as well as the corresponding rendered frames are shown in
the last two rows of Figure 8.

Fig. 7: Examples of domain-randomized images of the starting fabric
states encountered in the dataset generation phase described in
Section V-B. The first two columns show examples of images with
a square fabric, and the last two columns show similar examples
but with a t-shirt.



Fig. 8: The top row illustrates the the process of creating cloth in
Blender from a default square mesh. The second row is an example
of a starting configuration generated by dropping the cloth from
a fixed height and pinning a single arbitrary vertex. The pinned
vertex is labeled by the red circle. The third row illustrates frames
from a folding action in the simulator and the last row shows the
corresponding rendered images of the settled cloth before and after
the action.

Fig. 9: Visualization of the 3-dimensional descriptors learned via the
training procedure described in Section V by mapping each pixel’s
descriptor vector to an RGB vector. Thus, similar colors across the
images of columns two and four represent corresponding points on
the square cloth.

B. Simulation Experiment Details
In simulation, we conduct 50 trials of the first 4 folding

tasks described in VII-A on a domain randomized test set

generated as described in V-B. We consider an outcome
a success if the final state is visually consistent with the
target image. We additionally declared a failure when the
planned pick and drop pixels were more than 50 pixels
away from their correct ground truth locations which we
had access to in Blender. Note that this is neither a sufficient
nor necessary condition for a successful fold, but nevertheless
serves as a decent heuristic. While we considered more
quantitative metrics such as structural similarity between
the target image and the final state and summed distance
between corresponding vertices on the mesh, these metrics
are insufficient when the test time starting configuration is
significantly different from the demonstration configuration.

C. Simulation Experiment Results

We evaluate the folding policies designed in Section VI in
the simulated fabric environment. The policies successfully
complete the tasks 84 to 96 percent of the time (Table V).

Task Success Rate
Single Fold 46/50
Double Inward Fold 48/50
Double Triangle Fold 42/50
T-Shirt Sleeves Fold 44/50

TABLE V: Simulated Fabric Folding Experiments: We observe that the
system is able to successfully complete the tasks 84 to 96 percent of the
time in simulation. Success is determined by visual inspection of the cloth
after the sequence of actions is executed. Example simulation rollouts are
shown in Figure 14.

D. Pixel-wise Contrastive Loss

Here we touch upon the details of the pixel-wise contrastive
method from [7] used to train the descriptor networks. A neu-
ral network f maps Ia to a D-dimensional descriptor volume:
f : RW×H×3 7−→ RW×H×D. During training, a pair of images
and sets of both matching pixels and non-matching pixels are
sampled between the image pair. The following contrastive
loss minimizes descriptor distance between matching pixels
and pushes descriptors for non-matching pixels apart by a
fixed margin M:

L(Ia, Ib,ua,va,ub,vb) ={
|| f (Ib)[ub,vb]− f (Ia)[ua,va]||22 match
max(0,M−|| f (Ib)[ub,vb]− f (Ia)[ua,va]||2)2 non-match

where (ua,va),(ub,vb) in equation (1) is a correspondence
pair and where (ua,va),(ub,vb) in equation (2) is not a
correspondence pair.

E. Descriptor Mapping Visualizations

We present the descriptor volumes produced by a model
trained to output 3-dimensional descriptors. We coarsely
visualize the volumes by presenting them as RGB images
(Figure 9), and observe that corresponding pixels of the
cloth map to similar colors in the descriptor volumes across
configurations.



Fig. 10: Additional rollouts of the smoothing task from randomly chosen starting configurations. The learned descriptors are used to locate
the corners of the fabric and successively pull them to a reference location in an image of the flat cloth.

Fig. 11: Additional rollouts of the smoothing task from randomly chosen starting configurations. The learned descriptors are used to locate
the corners of the fabric and successively pull them to a reference location in an image of the flat cloth.



Fig. 12: Additional rollouts of the folding tasks described in Section VII-A from arbitrary starting configurations. The left column, center
column and right column contain results for tasks 4, 3 and 2 respectively.

Fig. 13: Ablation studies: We study the sensitivity of the learned dense
object descriptors as described in Sections V and X-G to training parameters.
Starting from top left, and proceeding clockwise, we test the effect of testing
on RGB vs depth images, on the descriptor dimension (either 3, 9, or 16), on
the number of ground truth annotations, and whether domain randomization
is used. All results are evaluated using pixel match error on a held-out set
of image pairs.

F. Physical Trial Trajectories

In this section, we present additional trials of the physical
experiments conducted using the descriptor-based policies for
smoothing (Figure 10, Figure 11) and folding (Figure 12).

G. Descriptor Quality Ablations

To investigate the quality of the learned descriptors with
training process described in Section V, we perform four
sets of ablation studies. We evaluate the quality of learned

Fig. 14: Simulation Policy Visualization: Visualization of the policy
executed in simulation (with Blender) using learned descriptors for folding
tasks 2 and 4 described in VII-A. The first two columns show the
corresponding folding instructions from a web interface (pick-and-place
actions shown with red arrows) for tasks 2 and 4. The third column shows
images of the previously unseen initial configurations of fabrics before the
actions, while the last two columns show the result of executing descriptor-
parameterized actions. Results suggest that the learned descriptors can be
used to successfully perform a variety of folding tasks from varying initial
configurations.

descriptors in a manner similar to Sundaresan et al. [41] by
evaluating the `2 pixel distance of the pixel match error on a
set of 100 pairs of held-out validation set images, where for
each we sample 100 pixel pairs. We study the effect of training
descriptors on (1) RGB or depth images, (2) using descriptor
dimension 3, 9, or 16, (3) using 200, 450, or 700 ground-truth
annotated images, and (4) whether domain randomization is



used or not. Results suggest that the learned descriptors are
best with RGB data, with descriptor dimension between 3 and
16 and with domain randomization, though the performance
is generally insensitive to the parameter choices, suggesting
a robust training procedure. Based on these results, we use

RGB images with domain randomization, and with descriptor
dimension 3 for all simulated experiments for both the t-
shirt and square fabric. We use RGB, domain-randomized,
9-dimensional descriptors for real fabric experiments. See
Figure 13 for plots.


