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Abstract— Assisting surgeons with automation of surgical
subtasks is challenging due to backlash, hysteresis, and variable
tensioning in cable-driven robots. These issues are exacerbated
as surgical instruments are changed during an operation. In
this work, we propose a framework for automation of high-
precision surgical subtasks by learning local, sample-efficient,
accurate, closed-loop policies that use visual feedback instead
of robot encoder estimates. This framework, which we call
deep Intermittent Visual Servoing (IVS), switches to a learned
visual servo policy for high-precision segments of repetitive
surgical tasks while relying on a coarse open-loop policy
for the segments where precision is not necessary. We train
the policy using only 180 human demonstrations that are
roughly 2 seconds each. Results on a da Vinci Research Kit
suggest that combining the coarse policy with half a second of
corrections from the learned policy during each high-precision
segment improves the success rate on the Fundamentals of
Laparoscopic Surgery peg transfer task from 72.9% to 99.2%,
31.3% to 99.2%, and 47.2% to 100.0% for 3 instruments
with differing cable properties. In the contexts we studied,
IVS attains the highest published success rates for automated
surgical peg transfer and is significantly more reliable than pre-
vious techniques when instruments are changed. Supplementary
material is available at https://tinyurl.com/ivs-icra.

I. INTRODUCTION

Laparoscopic surgical robots such as the da Vinci Research
Kit (dVRK) [17] are challenging to accurately control using
open-loop techniques because of the hysteresis, cable-stretch,
and complex dynamics of their cable-driven joints [10],
[33], [15]. Furthermore, encoders are typically located at
the motors, far from the joints they control, making accurate
state estimation challenging. Prior work addresses these issues
by learning a model of robot dynamics from data [15],
[39], [54] for accurate open-loop control or by learning
control policies that directly command the robot to perform
tasks [53]. However, these approaches tend to require many
training samples, which can take a long time to collect
on a physical robot. Additionally, learning a model of the
robot’s dynamics requires accurate state estimation, which
requires motion capturing techniques using fiducials [15], [39].
Also, the learned dynamics models can overfit to the specific
cabling properties of individual instruments (see Section V-C).
Because instrument changes are commonplace within and
across surgeries, control strategies must be robust to these
shifts in cabling properties.
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Fig. 1: Intermittent Visual Servoing (IVS). Visual Servoing Pipeline: To
compensate for cable-related effects, a policy maps images of the workspace
from a top-down RGB camera to corrective motions. Peg Transfer Example:
The robot switches to a visual feedback policy for high-precision segments
of the task (green), and uses a coarse policy to navigate between these
segments (blue). Multiple Surgical Instruments: We experiment using 3
different large needle drivers, each with unique backlash, hysteresis, and
cable tension properties.

We propose a framework called intermittent visual servoing
(IVS), which combines coarse planning over a robot model
with learning-based, visual feedback control at segments of
the task that require high precision. We use RGBD sensing to
construct open-loop trajectories to track with a coarse policy,
but during intermittent servoing, we only use RGB sensing,
as it can capture images at a much higher frequency. Further,
depth sensing performs poorly when the scene is moving, so
using RGB allows for continuous visual servoing while the
robot is still in motion. Typical depth sensors operate at 3.5
frames per second (FPS), whereas commodity cameras can
reach over 90 FPS. This, combined with not requiring the
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Fig. 2: Robot Setup for FLS Peg Transfer. We use Intuitive Surgical’s da
Vinci Research Kit robot. We use red 3D printed blocks and a red 3D printed
peg board. We use a uniformly red setup to simulate the surgical environment,
where color alone may not provide sufficient signal, as surgeons rely on
minute differences in color, depth and texture to complete high-precision
tasks. We use a top-down camera to generate open-loop trajectories (RGBD)
and capture the input for visual servoing (RGB). The FLS peg transfer task
involves transferring 6 blocks from the 6 left pegs to the 6 right pegs, and
transferring them back from the right pegs to the left pegs. As each block’s
opening has a 4.5 mm radius, and each peg’s cylindrical is 2.25 mm wide,
the task requires high precision, making it a popular benchmark task for
evaluating human surgeons.

robot to fully stop to sense allows for 10.0 corrective updates
per second during peg transfer experiments, compared with
only 1.6 for RGBD servoing.

We use imitation learning (IL) to train a precise, visual feed-
back policy from expert demonstrations. Imitation learning is
a popular approach for training control policies from demon-
strations provided by a human or an algorithmic supervisor,
but may require significant amounts of data [2], [35], which is
expensive in the case of a human supervisor [43]. To mitigate
this requirement, the learning-based, visual feedback policy is
only trained on segments where accuracy is necessary, while
we rely on a coarse open-loop policy to navigate between
these segments. As a result, training the local, visual feedback
policy requires fewer demonstrations than a policy trained
to perform the entire task. Because this policy is trained
to directly output controls from images, it does not require
explicit state estimation techniques as in prior work. While
dVRK surgical instruments can have errors up to 6 mm in
positioning [15], this is sufficient for low-precision segments
such as transferring a block between pegs.

This paper makes the following contributions: (1) a novel
deep learning framework, IVS, for automation of high-
precision surgical tasks, (2) experiments on the FLS peg
transfer task suggesting that IVS can match state-of-the-art
calibration methods in terms of accuracy while requiring
significantly less training data, (3) experiments suggesting
that IVS is significantly more robust to instrument changes
than prior methods, maintaining accuracy across 3 robot
instruments having different cabling-related properties.

II. RELATED WORK

Robot assisted surgery has been widely adopted based
on pure teleoperation, as exemplified by the popularity of
curricula such as the Fundamentals of Laparoscopic Surgery
(FLS) [7], [9]. Automating robot surgery has proven to be
difficult, and so far all standard surgical procedures using

robot surgery techniques use a trained human surgeon to
teleoperate the robot arms to compensate for various forces
and inaccuracies in the robot system [56]. Automating surgi-
cal robotics using cable-driven Robotic Surgical Assistants
(RSAs) such as the da Vinci [17] or the Raven II [11] is
known to be a difficult problem due to backlash, hysteresis,
and other errors and inaccuracies in robot execution [29],
[47], [39].

A. Automation of Surgical Robotics Subtasks

Automation of surgical robotics subtasks has a deep history
in the robotics research literature. Key applications include
cutting [55], debridement [18], [34], [47], hemostasis [12],
suturing [48], [38], [44], [37], and more broadly manipulating
and extracting needles [50], [57], [8], [6].

We focus on the Fundamentals of Laparoscopic Surgery
(FLS) peg-transfer surgeon training task, in which the surgeon
must transfer 6 blocks from a set of pegs to another set of
pegs, and then transfer them back (Fig. 2). As each block’s
opening has a 4.5 mm radius, and each peg’s cylindrical is
2.25 mm wide, the task requires high precision, making it a
popular benchmark task for evaluating human surgeons [1],
[4], [42], [36], [28], [40]. Prior work in automating peg
transfer suggests that servoing based on encoder readings
cannot reliably perform this task, as positioning errors lead
to failure [15], [14]. As a result, sophisticated calibration
techniques are used to correct for cabling effects of the
surgical instrument during execution [15], [14]. These works,
while producing effective and reliable results, result in systems
are instrument-specific. In contrast, we focus on a system that
does not require accurate calibration and transfers across a
variety of surgical instruments with distinct cabling properties.

B. Switching Surgical Instruments

Switching surgical instruments during surgery is both
necessary and common [31]. Depending on the type of
procedure, up to four instruments may be exchanged on
a single arm in rapid succession to perform a task, and this
may occur multiple times over a given procedure [31]. These
exchanges have been demonstrated to contribute to 10 to
30% of total operative time, increasing patient exposure
to anesthesia [32]. Additionally, each instrument is only
permitted to be used for 10 operations regardless of the
operation length due to potential instrument degradation and
even within this permitted-use window instruments frequently
fail [51], [27]. Moreover, between patients, instruments
must undergo high pressure, high heat sterilization that
further degrades the instrument [51]. Instrument collisions
during a procedure are common and can alter the cabling
properties of the instrument, necessitating re-calibration in the
case of automated surgery. Sophisticated, instrument-specific
calibration techniques require many long trajectories of
data [15], which further increases the wear on the instrument,
reduces its lifespan, and can require time during or before
a surgical procedure to collect data. Therefore, developing
policies that are efficiently transferable across instruments is
critical to automation of surgical tasks, since instruments are



exchanged frequently and instrument properties change over
time with increased usage.

C. Visual Servoing for High Precision Tasks

Visual servoing has a rich history in robotics [13], [19].
Classical visual servoing mechanisms typically use domain-
specific knowledge in the form of image features or system
dynamics [5], [30]. In recent years, data-driven approaches
to visual servoing have gained in popularity as a way to
generalize from patterns in larger training datasets. For
example, approaches such as Levine et al. [24] and Kalash-
nikov et al. [16] train visual servoing policies for grasping
based on months of nonstop data collection across a suite
of robot arms. Other approaches for learning visual servoing
include Lee et al. [22], who use reinforcement learning and
predictive dynamics for target following, Saxena et al. [46] for
servoing of quadrotors, and Bateux et al. [3] for repositioning
robots from target images.

In this work, to facilitate rapid instrument changes, it
is infeasible to obtain massive datasets by running the da
Vinci repeatedly for each new instrument, hence we prioritize
obtaining high-quality demonstrations [2], [35] at the critical
moments of when the robot inserts or removes blocks from
pegs. This enables the system to rapidly learn a robust policy
for the region of interest, while relying on a coarse, open-
loop policy otherwise. Coarse-to-fine control architectures
combining geometric planners with adaptive error correction
strategies have a long history in robotics [26], [45], [41], [52],
[25], with works such as Lozano-Pérez et al. [26] studying the
combination of geometric task descriptions with sensing and
error correction for compliant motions. Our work is similar
to that of Lee et al. [23], who use a model-based planner for
moving a robot arm in free space, and reinforcement learning
for learning an insertion policy when the gripper is near the
region of interest.

III. PROBLEM DEFINITION

We focus on the FLS peg transfer task, using the setup
in Hwang et al. [15], which uses red 3D printed blocks
and a red 3D printed pegboard (see Fig. 2). In real surgical
environments, blood is common, so surgeons rely on minute
differences in color, depth, and texture to complete high-
precision tasks. We use 3D printing to construct a uniformly
red pegboard setup, so the environment more accurately
reflects a surgical setting. The task involves transferring 6
blocks from the 6 left pegs to the 6 right pegs, and transferring
them back from the right pegs to the left pegs (see Fig. 2).
As in Hwang et al. [14], [15], we focus on the single-arm
version of the task.

We define the peg transfer task as consisting of a series of
smaller subtasks, with the following success criteria:
Pick: the robot grasps a block and lifts it off the pegboard.
Place: the robot securely places a block over a target peg.

We define a transfer as a successful pick followed by a
successful place. A trajectory consists of a single instance
of any of the two subtasks in action. A single trial of the
peg transfer task initially consists of 6 blocks starting on

one side of the peg board, each with random configurations.
A successful trial without failures consists of 6 transfers to
move all 6 blocks to the other side of the board, and then 6
more transfers to move the blocks back to the original side
of the peg board. A trial can have fewer than 12 transfers if
failures occur during the process.

IV. IVS: METHOD

A. Subtask Segmentation and Policy Design

Due to cabling effects, tracking an open-loop trajectory to
pick or place targets using robot encoder estimates may result
in positioning errors; we thus propose decomposing subtasks
into 3 phases: (1) an open-loop approach phase, (2) a closed-
loop visual-servoing correction phase, and (3) an open-loop
completion phase. The open-loop phases are executed by a
coarse policy πc that tracks predefined trajectories using the
robot’s odometry. The closed-loop phases are executed by a
learned, visual feedback, fine motion policy πf that corrects
the robot’s position for the subsequent completion motion.
At time t, the executed policy outputs an action vector at , as
well as a termination signal φt ∈ {0,1}, which signals to the
system to switch to the next segment.

Pick Subtask: The first segment uses an open-loop policy
π0

c to execute a trajectory to a position above the target grasp
(approach). After this motion, a visual feedback policy π0

f
takes over to correct for positioning errors (correction). Once
corrected, the robot again executes π0

c to perform a predefined
grasping motion relative to its current pose (completion).

Place Subtask: Similar to block picking, an open-loop
policy π1

c executes a trajectory to a position above the
target placement (approach). After this motion, a visual
feedback policy π1

f takes over to correct for positioning
errors (correction). Once corrected, the robot opens its jaws,
resulting in the block dropping onto the peg (completion).

B. Fine-Policy Data Collection

We collect demonstrations from a human teleoperator to
generate a dataset to train a neural network for a fine policy.
We collect 15 trajectories on each of the 12 pegs for both
subtasks, resulting in 180 transfers, and 360 expert trajectories.
Each trajectory consists of a small corrective motion, as the
teleoperator navigates the end-effector from a starting position
to the goal position. For picks, the goal position is directly
above the optimal pick spot. For places, the goal position is
such that the center of the block aligns with the center of the
target peg. The starting position of each attempt is a random
position within 5 mm of the goal position. Further, due to
the size of the blocks, small segments of irrelevant blocks
may be visible after data preprocessing (see Sec. IV-C.1). To
capture this data property, while collecting trajectories for a
given target peg, we populate neighboring pegs with blocks.
Then, prior to each attempt, we randomize the configurations
of the neighboring blocks.

For each demonstration, we capture a top-down RGB image
I ∈ R1200×1900×3 and end-effector position p ∈ R2 in the
robot’s base frame estimated from encoder values at 5 Hz. We
do not record the z coordinate, because the correction phase
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Fig. 3: Data Filtering. We preprocess the images in two ways: (1) crop a
150×150 image around the center of the target peg, and (2) color-crop out
all red pixels outside of a block-sized radius from the center of the peg.
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Fig. 4: Supervision Extraction with Labeled Example. Top: The action
at , indicated by the arrows, is a vector of length 1 mm (λ ) in the direction
pt′ − pt traveled by the expert trajectory, where pt is the current waypoint
and pt′ is the next waypoint that is at least 1 mm (λ ) distance from pt .
The extracted termination label, indicated by the color of the waypoint,
is 1 if the distance to the final position in the trajectory pT is less than
2 mm (ν), and 0 otherwise. Each waypoint corresponds to an image, and
each image receives both a corrective action label and a termination signal
label. Bottom: Preprocessed images (see Fig. 3) from a corrective place
trajectory with labels extracted using method described above.

for both subtasks will be performed in an plane with a fixed z
coordinate. While the recorded end-effector position has errors
due to cabling properties [15], [39], [14], we demonstrate
empirically that the high-frequency visual feedback policy
trained from supervision extracted from these estimates is
reliable (Sec. V). Each demonstration is a raw trajectory:

T = {(It , pt)}T
t=0

The pick dataset D0 = {T0,i}N0
i=1 consists of 2400 datapoints,

and the place dataset D1 = {T1,i}N1
i=1 contains 1804 datapoints.

The corrective pick trajectories are slightly longer than correc-
tive place trajectories, resulting in 3.3 additional datapoints
per demonstration.

C. Preprocessing of Visual Feedback Policy Training Data

1) Image Filtering: To train a single model on all 180
demonstrations, regardless of the target peg, we (1) crop
images around the peg, and (2) color crop other blocks (see
Fig. 3). For (1), we crop a 150×150 image centered on the
target peg. For (2), we color-crop out all red pixels outside
of a block-sized radius from the center of the target peg.
This removes the other blocks from the input image as much
as possible while keeping the instrument, target block, and
target peg visible. Hereafter, we let It refer to the image after
preprocessing the raw image (see Fig. 3).

2) Supervision Extraction: We additionally process the
datasets to extract supervision for subsequent learning. For an
input raw trajectory T , we transform it via mappings Πa and
Πo that extract the action executed and a terminal condition,
respectively (see Fig. 4).

Corrective Action Extraction: We transform T to get the
action-labeled dataset Ta = Πa(T ) = {(It ,at)}T

t=1, where

at = λ
pt ′ − pt

‖(pt ′ − pt)‖2

s.t. t ′ = min
({

t ′′ | t ′′ > t ∧‖pt ′′ − pt‖2 ≥ λ
}
∪{T}

)
.

The action at is a vector of length λ in the direction pt ′− pt
traveled by the demonstration trajectory, where pt ′ is the next
waypoint that is at least λ distance from pt . In the case the
distance to the final position in the trajectory pT is less than
λ , pt ′ = pT . In experiments, we set the λ hyperparameter to
1 mm, as 1 mm is an upper bound on the expected Cartesian
distance traveled by the end-effector per corrective update.

Terminal Condition Extraction: We extract a binary
completion label for each image. We transform T to get
the action-labeled dataset To = Πo(T ) = {(It ,φt)}T

t=1, where
φt = 1{‖pT − pt‖2 ≤ ν}. The flag φt is 1 if the distance to
the final position pT is less than the hyperparameter ν . In
experiments, we set ν to 2 mm, as 2 mm is strict enough to
reliably confirm termination, and lenient enough to prevent
label imbalance, as 30% of images are labeled positively.

D. Constructing the Visual Feedback Policy

We train the visual feedback policy πf for each subtask
from demonstrations using supervised learning. The policy
takes in a top-down RGB image It as input and outputs
(at ,φt), where at is an action vector and φt is a termination
condition.

1) Training the Visual Feedback Policy: The policy consists
of an ensemble of 4 Convolutional Neural Networks [20],
[21], denoted by fθ[1..4] . Each individual model fθi consists of
alternating convolution and max pooling layers, following by
dense layers separated by Dropout [49]. We use an ensemble
of k models to make the policy more robust, and we evaluate
for k ∈ {1,2,4,8} in Table I. We select k to be 4. Each
model fθi uses a processed 150×150×3 image It as input
and outputs estimates at,i and φt,i of the supervisor action and
terminal conditions respectively. Each model trains on 150
randomly sampled trajectories, with 30 for testing. We train
each network by minimizing lMSE+µlCE on sampled batches
of its training data, where lMSE is a Mean Square Error loss
on the action prediction, lCE is a cross-entropy loss for the
terminal condition prediction, and µ is a relative weighting
hyperparameter. Each model trains for 40 seconds on a K80
GPU. The weights in the convolutional layers are shared, as
useful convolutional filters are likely similar across subtasks,
while the weights in the dense layers are independent. Sharing
layers provides more supervision when training the filters.

2) Querying the Visual Feedback Policy: Once trained, we
evaluate the ensemble of models in parallel with a filtered



Fig. 5: IVS Example. Example of IVS correcting positioning errors. Top row (pick subtask): IVS removes pickup error with 5 corrective updates in 0.6
seconds. We overlay small blue circles to highlight an optimal pick location on the block, defined as the graspable point furthest from the peg along the
edge closest to the robot. The positioning of the robot is off due to the inaccuracy of the coarse policy, as the end-effector is not positioned over the block
(Frame 1). We then switch to the learned policy, and visual servoing guides the end-effector over a pick point (Frames 2-5), and once determined a safe
pickup is possible, picks the block successfully (Frame 6). Bottom row (place subtask): IVS removes placement error with 12 corrective updates in 1.2
seconds. We overlay small green circles to highlight the location of the pegs. The positioning of the robot is off due to the inaccuracy of the coarse policy,
as the peg is not under the block (Frame 1). We then switch to the learned policy, and visual servoing guides the block over the peg (Frames 2-5), and once
determined a safe situation to drop, places the block successfully (Frame 6).

TABLE I: Ablation Study Varying Number of Models in En-
semble. We compare IVS with differing number of models in
the ensemble across 3 full trials of peg transfer (36 transfers).
More models results in a more robust policy, but due to compute
limitations, less frequent servoing. More frequent servoing results in
higher precision, as both the corrective action and the termination
signal are updated more frequently. The goal is to find a balance
between maximizing robustness (many models) and maximizing
update frequency (few models). We use an ensemble of 4 models.

Num Models Update Frequency Transfer Success Rate
1 15.6 97.2%
2 12.8 98.6%
4 10.0 100.0%
8 7.1 100.0%

RGB image (Sec. IV-C.1). We let

πf(It) = (at ,φt) =

(
1
4

4

∑
i=1

at,i,
4

∑
i=1

1{φt,i ≥ ω} ≥ κ

)
,

where ω and κ are a hyperparameters set to 0.70 and 3
respectively. We hand-tune these hyperparameters to maxi-
mize speed and minimize false positives. The predicted action
is the mean action across the ensemble, and the predicted
termination condition checks if at least κ models predict
termination with probability greater than ω .

V. EXPERIMENTS

The experimental setup has a top-down RGBD camera and
uses the teleoperation interface [17] to collect demonstrations
on the dVRK. Training data are collected on a single instru-
ment, but the system is tested with 3 different instruments that
have unique dynamics due to differences in cabling properties.
We use the position of the blocks and pegs estimated by an
RGBD image to construct trajectories for picks and places,
but only use RGB images for visual servoing.

We benchmark IVS against two baselines:

• Uncalibrated Baseline (UNCAL): This is a coarse
open-loop policy, implemented using the default un-
modified dVRK controller. The trajectories are tracked
in closed-loop with respect to the robot’s odometry, but
open-loop with respect to vision.

• Calibrated Baseline (CAL): This is a calibrated open-
loop policy [15] that is the current state-of-the-art method
for automating peg transfer. To correct for backlash,
hysteresis, and cable tension, the authors train a recurrent
dynamics model to estimate the true position of the robot
based on prior commands. Similar to the uncalibrated
baseline, the robot tracks reference trajectories in closed-
loop with respect to the position estimated by the
recurrent model, but open-loop with respect to visual
inputs. This method uses 1800 data points, however a
full trajectory is executed between each sample. IVS
collects 4204 data points, but at a much higher frequency,
with consecutive data points less than a millimeter apart
and each trajectory taking a few seconds to collect. As
a result, both methods take around 30 minutes to collect
data, but we observe in Section V-C that the data used
for IVS can be reused for different instruments, unlike
the data used by CAL.

A. Accuracy Results

Overall, IVS achieves a pick and place success rate of
99.2% and 100.0% respectively. IVS succeeds on 118 of 119
transfers, resulting in a 99.2% transfer success rate, exceeding
the uncalibrated baseline by over 25%. See Table II for details
and we illustrate an example of IVS correcting positioning
errors in Figure 5.

B. Timing Results

The goal is to produce higher success rates, rather than to
reduce the timing. However, we find that the proposed method



TABLE II: Peg Transfer Baseline Comparison. Benchmark comparing performance of IVS to the baselines described in Section V. IVS
beats both baselines in terms of pick success rate, place success rate, and overall transfer success rate. Due to using RGB imaging, we are
able to take many corrective steps per second without stopping, minimizing additions to the mean transfer time.

Pick Success Rate Place Success Rate Mean Transfer Time (s) Success / Attempts Transfer Success Rate
Uncalibrated Baseline 96.3% 75.7% 8.7 77 / 106 72.6%
Calibrated Baseline 97.9% 99.6% 9.5 116 / 119 97.5%
IVS 99.2% 100% 10.2 118 / 119 99.2%

TABLE III: IVS Efficiency Benchmark. We analyze efficiency of
IVS on 3 large needle driver instruments (see Fig. 1). On average,
IVS moves the end-effector 4.1 mm, requiring an additional 1.2
seconds per transfer.

Pick
Instrument Corrective Updates Time (sec) Distance (mm)
A 5.75 ± 2.10 0.60 ± 0.19 1.71 ± 0.65
B 7.73 ± 2.63 0.77 ± 0.22 2.52 ± 0.78
C 7.43 ± 3.03 0.74 ± 0.26 2.24 ± 0.85
Mean 7.01 ± 2.77 0.70 ± 0.24 2.17 ± 0.84

Place
Instrument Corrective Updates Time (sec) Distance (mm)
A 4.90 ± 4.82 0.52 ± 0.43 2.04 ± 1.77
B 5.63 ± 4.20 0.58 ± 0.37 2.12 ± 1.57
C 4.68 ± 4.21 0.49 ± 0.37 1.78 ± 1.43
Mean 4.97 ± 4.47 0.52 ± 0.39 1.93 ± 1.58

is only marginally slower than the baselines (see Table II).
Due to fast image capture and continuous servoing via RGB
imaging, we are able to both update the robot’s velocity
and check for termination 10 times per second, minimizing
additions to the mean transfer time. As a result, the mean
transfer time is only 1.5 seconds slower than the uncalibrated
baseline, and 0.7 seconds slower than the calibrated baseline.

We report IVS timing results in Table III. On average, each
pick requires 2.2 mm of correction, spanning 0.7 seconds
and 7 corrective updates, and each place requires 1.9 mm of
correction, spanning 0.5 seconds and 5 corrective updates.

C. Transferability Results

To conduct instrument transfer evaluation, we experiment
using 3 large needle driver instruments: A, B, and C (Fig. 1
bottom). Each has inconsistent cabling characteristics, and
we trained IVS with data only from instrument A.

We investigate whether models learned from data using
one instrument can transfer to another instrument without
modification. This is challenging, because different surgical
instruments, even of the same type, have different cabling
properties due to differences in wear and tear. However,
the visual servoing algorithm does not rely on the cabling
characteristics of any specific instrument, but rather only
requires that the robot is able to roughly correct in the
desired direction. We hypothesize that errors in executing the
corrective motion can be mitigated over time by executing
additional corrective motions, as long as the cumulative
error is decreasing. However, the calibrated baseline uses
an observer model that explicitly predicts the motion of the
robot based on prior commands, which requires learning
the dynamics of the specific instrument used in training
which may not be sufficiently accurate on a new instrument.
We report transferability results in Table IV and observe
that the calibrated baselines suffer significantly on different

TABLE IV: Instrument Transfer Comparison. Benchmark compar-
ing performance on 10 full trials of peg transfer (120 transfers) across
3 different surgical instruments with unique cabling characteristics
of the uncalibrated baseline, calibrated baseline trained on each
instrument, and IVS trained on one instrument. IVS consistently
beats both baselines, while remaining robust to instrument changes.

Instrument UNCAL CALA CALB CALC IVSA

A 72.6% 97.5% 48.1% 55.2% 99.2%
B 31.3% 58.5% 98.3% 67.0% 99.2%
C 47.2% 27.8% 81.6% 97.4% 100.0%
Mean 50.5% 69.8% 77.3% 79.2% 99.4%

instruments, and the IVS model trained on Instrument A does
not decrease in performance.

VI. DISCUSSION AND FUTURE WORK

We present intermittent visual servoing. IVS maintains
performance across different instruments surprisingly well
(see Table IV), and this transferability is critical to imple-
menting automated surgical techniques where instruments are
being exchanged frequently and an instrument’s properties
are expected to change over time. In future work, we will
investigate how to further optimize IVS, and apply it to
surgical cutting [55], surgical suturing [48], and non-surgical
applications such as assembly [25], to evaluate the ability of
IVS to generalize.
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