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Abstract— Learning-based perception systems in robotics
often requires large-scale image segmentation annotation. Cur-
rent approaches rely on human labelers, which can be expen-
sive, or simulation data, which can visually differ from real
data. This paper proposes Labels from UltraViolet (LUV), a
novel framework that enables rapid, automated, inexpensive,
high quality data collection in real. LUV uses transparent,
UV-fluorescent paint with programmable UV LEDs to collect
paired images of a scene in standard and UV lighting. This
makes it possible to autonomously extract segmentation masks
and keypoints via color thresholding. We apply LUV to a suite
of diverse robot perception tasks: locating fabric keypoints,
cable segmentation, and surgical needle detection to evaluate
its labeling quality, flexibility, and data collection rate. Results
suggest that LUV is 180-2500 times faster than a human labeler
across the tasks while retaining accuracy and strong task
performance. Code, datasets, visualizations, and supplementary
material can be found at https://sites.google.com/
berkeley.edu/luv.

I. INTRODUCTION

Supervised learning of image segmentation is a popular
technique for training perception and planning systems for
robots, with encouraging results in applications such as
autonomous driving [13, 21, 34], robot object grasping [5,
11, 17, 21, 26], deformable manipulation [12, 15, 22, 36,
41, 47, 48], and robot-assisted surgery [29, 45]. Supervised
learning requires labeled data, and a common approach is
for humans to hand-label images with segmentation masks,
keypoints, and class labels [15, 19, 45]. However this is
time-consuming, error-prone, and expensive [34], especially
when dense annotations are required [5, 11, 12, 21, 41]. An
alternative approach is to use simulated data, where data
annotation can be densely and autonomously generated at
scale at relatively low cost [5, 12, 17, 18, 21, 26, 41].

In this paper, we present Labels from UltraViolet (LUV)
(Figure 1), a novel framework for rapidly and automatically
collecting inexpensive and high quality ground-truth annota-
tions without human labels. LUV uses an array of ultraviolet
lights placed around a manipulation workspace that can be
switched automatically. We mark objects or keypoints in
the scene with transparent, ultraviolet fluorescent paints that
are nearly invisible in visible light but highly visible under
ultraviolet radiation. For physical configurations, LUV takes
two images: one with standard lighting and one with the
ultraviolet lights turned on. LUV provides precise labels for
the standard image by using the paired ultraviolet image
and trains a network on the resulting dataset to make
predictions on subsequent scenes without UV paint under
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Fig. 1: Framework overview. Data collection: LUV collects paired
images in standard and UV lighting. Relevant keypoints (in this
case, corners) are coated with transparent, UV-fluorescent markings
which are used to extract annotations from the UV images for the
standard images. Training: The annotations are used to train a
segmentation network to predict masks from images under standard
lighting. In contrast to prior approaches to obtain segmentation
labels for images, LUV requires no human annotator or simulator.
Execution: During execution, the trained network is takes in images
of unpainted objects and returns corner locations.

standard lighting. Since submitting this paper, we learned of
impressive prior work by Takahashi and Yonekura [43]. They
demonstrated compelling image segmentation results using
UV-fluorescent markers to segment fluid, powders, and cloth
keypoints by developing a hand-held device which strobes
UV lights to collect real-time image annotations. This paper
extends the concept to make it more easily accessible for
self-supervised data collection. LUV has several desirable
qualities:

1) accurate segmentation masks and keypoints on real
images,

2) flexibility to a wide variety of materials and tasks,
3) rapid data collection with no human annotation,
4) inexpensive setup with off-the-shelf parts costing less

than $300 total.

To quantitatively evaluate these properties, we apply LUV
to 3 real-world perception tasks in robot manipulation:
locating fabric keypoints [12, 21, 36, 37], cable segmen-
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tation [41], and surgical needle segmentation [38, 42, 45].
For each, we report the speed of data collection, qualitative
invisibility of markings, transferability to unpainted images,
and correspondence to human ground truth labels. Because
we are able to collect data much more efficiently than in
prior work, we study more visually complex variants of these
problems than previously considered.

This paper makes the following contributions:
1) LUV, an easy-to-setup, inexpensive framework for

rapid, automated and high quality ground truth image
annotations collection that is 180-2500 times faster
than a human labeler.

2) A user-friendly open-source codebase for running LUV
and training segmentation networks.

3) Publicly-available, annotated datasets for fabric corner
keypoints (3640 labeled images), cable segmentation
masks (486 labeled images), and needle segmentation
masks (1364 labeled images).

4) Experimental results evaluating the LUV-trained seg-
mentation results in terms of flexibility and perfor-
mance on 3 real-world robot perception tasks including
locating fabric keypoints, cables and surgical needles
segmentation. We report intersection over union (IOU)
metrics showing LUV produces accurate labels, en-
ables 83% task success on folding towels from corner
detections, and localizes needles within 1.7mm of
human labels.

II. RELATED WORK

A. Semantic Segmentation

Semantic segmentation is a well-studied field in computer
vision with significant advances in the past decade due
to the emergence of large labeled datasets like COCO,
PASCAL VOC, CityScapes [4, 9, 23], and the develop-
ment of segmentation architectures like fully-convolutional
networks (FCNs) [24], U-Nets [33], and region-proposal
networks [32]. Training these networks relies on a large
dataset of images with pixel-wise annotations of objects.
Previous work accomplishes this with cloud-based human
image labeling, which distributes the task of labeling data to
human laborers on platforms like Amazon Mechanical Turk
or Scale [1, 34]. This method, though effective, suffers from
inconsistent label quality, difficulty in specifying labels in
ambiguous situations, and cumbersome oversight processes
to filter low quality labels. In addition, for involved tasks
like image segmentation, the recommended price on Turk is
$0.82 [1] per image.

B. Self-supervised Robot Data Collection and Labeling

To alleviate the need for explicit human labels, many prior
works automate data collection and labeling by leveraging
specific structure available in the task. This is commonly
applied when training dynamics models that predict the
resulting state after an action, both on images [7, 10, 16,
46] and lower-dimensional state such as keypoints [27].
Recently, self-supervision has been applied in imitation

learning to obtain ground-truth action labels for image-
based policies by manually resetting the robot to a goal or
known configuration, perturbing the end effector by a known
displacement, and using the displacement with the initial
pose to compute an action label [8, 25, 45]. Self-supervision
is also a popular technique in reinforcement learning when
automatic resets are available. Kalashnikov et al. [20] and
Pinto et al. [30] use the result of autonomously explored
robot grasps to supervise a grasp quality estimator, making
it possible for them to collect 580K and 50K physical grasps
respectively. LUV makes state/label estimation possible in
situations where autonomous labels were previously difficult
to generate and can be applied to extend the above self-
supervision techniques. LUV is similar to Qian et al. [31],
who use visible markers to label images for a network that
predicts cloth features from depth images alone. In constrast
to this work, LUV can be used on pure RGB images, which
is useful in tasks such as needle segmentation where active
depth sensors tend to fail [45].

C. Fluorescent Marking Technology

Fluorescent markings are also commonly used in non-
robotics applications to track and identify target objects.
In medicine, near-infrared (NIR) fluorescence is used for
cancer treatment [35]. In water treatment, fluorescence spec-
troscopy is applied to identify fouling agents and monitor
wastewater quality [2]. In robotics, UV-fluorescent paints
have been used for tracking cloth state [39]. In contrast, we
do not use UV-fluorescence at execution time, and instead
use the fluorescent markings to label training data. The most
related work to this is Takahashi et al. [43], which marks
fluid, powder, and clothing with UV-fluorescent dye and
paint, then uses a custom-designed strobing LED system to
collect standard images and their corresponding annotations.
This paper extends their approach to other materials, makes
it more accessible with off-the-shelf parts to collect data in a
self-supervised way, and shows results on practical robotics
tasks.

III. LABELS FROM ULTRAVIOLET (LUV)

In this section, we present Labels from UltraViolet (LUV),
a framework for generating image annotations in manipula-
tion domains without human labeling.

A. Framework Overview

LUV is comprised of two phases: training and execution.
1) Training: During training, relevant keypoints and seg-

mentation masks are painted with transparent UV fluores-
cent paint, that are nearly invisible in natural lighting but
brightly light up in different colors under UV radiation. The
robot collects a dataset of paired images in the workspace:
Dtrain =

{
(Ii,std, Ii,uv)

Ntrain

i=1

}
. Each standard RGB image

Ii,std ∈ RH×W×3 is taken under standard workspace lighting
conditions. For the UV RGB images, Ii,uv ∈ RH×W×3, the
workspace is illuminated by ultraviolet spectrum LED lamps.
The workspace is otherwise unmodified between the paired
images. The fluorescence is used to extract segmentation
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Fig. 2: UV Paint Types: We consider three types of UV-fluorescent
paint in this paper: dyes (top), lacquer-based paint (middle), and
water-based paints (bottom). We describe their properties and
painting techniques in Section III-B. Most paints dry almost clear.
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Fig. 3: UV Paint Transparency: The top row of this figure
contains both painted and unpainted towels, surgical needles, and
household charging cables under standard lighting. The left objects
in each image are unpainted and the right objects are painted with
transparent UV paint. Under standard lighting, the painted objects
are difficult to visually distinguish from the unpainted objects,
without careful inspection. Under UV radiation (bottom row), the
painted objects distinctly fluoresce based on the color of the paint
used.

masks and keypoints from the UV images, which are used
as training labels for the standard images. A learning-based
perception model fθ is trained on the labeled dataset.

2) Execution: During execution, the perception model
fθ is evaluated only on images under standard workspace
lighting conditions containing unpainted objects.

B. UV Fluorescent Paint

We experiment with three types of fluorescent marking
substances (Figure 2) and describe the most successful
techniques for applying them, as well as their robustness
and surface finish properties.

1) Lacquer-based paint: This is a viscous paint consisting
of fluorescent powder dissolved in a lacquer which dries
clear and glossy. The red and blue is completely dissolved,
yielding a glassy finish, while the green is only partially
dissolved with some suspended particles. The green paint
thus leaves behind a faint white powder when dried [14]. This
paint can be thinned with standard lacquer thinner, making it
more suitable for applying to deformables without stiffening.

2) Dye: This substance is a watery staining fluid which
works well on absorbent materials. There is one type which
is completely transparent under visible light and fluoresces
blue, and a variety of other fluorescent colors which have
color under visible light. The clear variant is completely

invisible under standard lighting, while the colored dyes are
only invisible on materials colored similarly. On light colored
materials, these dyes can be diluted to further minimize
staining and save cost [6].

3) Water-based paint: This paint is acrylic and dries
translucent. It is invisible on lighter colored materials but
leaves a faint milky residue on darker materials [14].

C. Test Material Properties

This section describes some important factors to consider
when choosing a marking type for a new material.

1) Natural fluorescence: Some materials, particularly
white colored papers and cloths, exhibit natural blue fluores-
cence, prohibiting the use of blue markings on them. Other
color fluorescent markings will work on these materials,
such as the white towel in our experiment, though the blue
fluorescence will shift the color of marks when exposed to
UV light. Avoiding materials which naturally fluoresce in
the scene is thus desirable for ease of marking and post-
processing.

2) Fibrous materials: Diluted lacquer paint and dyes are
particularly well suited for cloth, whereas undiluted lacquer
or water-based paint should be used for solid objects.

3) Color: Dark objects result in weaker fluorescence due
to light absorption, though in our experience this is typically
only significant with near-black materials and cloth.

4) Luster: Matte materials are better suited to water-based
paint. Shiny objects match the surface finish of lacquer paint.

D. UV Lighting

We describe the UV lights used to illuminate the setup
and the smartplugs which automatically toggle them.

1) UV Lights: LUV uses 365nm LED UV floodlights to
bathe the workspace in light from multiple angles to min-
imize shadows which fragment segmentation masks. Tube-
fluorescent bulbs are not usable for this task because they
cannot be switched rapidly, while LEDs nearly instantly
trigger. Shorter wavelength UV lights yield brighter fluores-
cence, hence the choice of 365nm light is important over
other available 405nm LEDs. LUV can work in settings
with strong ambient room lighting, as in the cable seg-
mentation and towel smoothing datasets, or in controlled
lighting settings where room lights can be switched off, as
in needle segmentation. Toggleable ambient lights optionally
make fluorescent labels stand out more from the background.

2) Toggling: We use an off-the-shelf smart plug which
plugs into any standard wall socket, connects to a local
network, and is controllable from any device on the same
network via a Python interface. This allows programmati-
cally switching lights on and off during data collection, and
is a scalable solution for any number of lights by plugging
a power adapter into the smart plug.

E. Mask Generation

To generate masks, the UV lights are turned on, and if
available the ambient white lights turned off. The camera
exposure for each sample is found by manually sweeping



UV OnStandard LUV Label Human Label

Fig. 4: LUV Data Collection: We consider three tasks from prior robot manipulation literature: cloth corner detection, cable segmentation,
and needle segmentation. To collect a labeled datapoint, LUV collects an image in standard lighting and then collects an image of the
same scene under UV lighting. Then, color segmentation is used to extract the relevant annotations for the image. HSV filtering described
in Section III-E is able to extract the red fluorescence of the needle without capturing any of the other red objects in the scene. We
quantitatively compare the consistency of the masks to human labels (right column) in Table ??.

exposures and selecting the exposure yielding clearest label
colors. We use the Zed M stereo camera, which provides a
software interface to programmatically control these settings.
White-balance is held constant during data collection, and
HSV color thresholds are hand-picked from a sample image.
For our tasks this calibration process takes only a few min-
utes, though it could be streamlined by implementing a user
interface for automatically picking exposure and thresholds.
Figure 4 shows examples of extracted masks.

For scenes with both dark and light painted materials,
multiple exposures can be captured and post-processed with
HDR [28] to retrieve well exposed labels for all colors.

F. Parts List and Cost

The total 1-time cost of setting up LUV for indoor ambient
lighting at the time of paper submission is $282. Based
on Amazon’s recommended price of $0.82 per semantic
segmentation label on Amazon Mechanical Turk, and using
2 labels per image based on their recommendation for
quality [1], this breaks even with Turk at 167 labeled images.
In contrast, several of the datasets generated in this work
contain well over 1000 labeled images (Section IV), making
the cost of LUV more than 5x less expensive.

Parts needed to set up a minimal working system are
1) Lights: Everbeam 100W LED 365nm floodlight, avail-

able on Amazon for $88 each.
2) Smart Plug: Kasa Smart Plug HS103P2, available as a

2-pack on Amazon for $18.
3) Camera: Any existing RGB camera will work, however

for best results it should have exposure control and
manual white-balance options.

4) Fluorescent Marking: To get started, we recommend
beginning with lacquer based paints, being the most
versatile and invisible. Our paint is sourced from the

company “GloEffex” under the product name “Trans-
parent UV Paint” [14].

IV. EXPERIMENTS

We evaluate LUV on a set of perception tasks commonly
studied in robot manipulation, but LUV can in principle
be applied to other tasks such as keypoint detection. Ex-
periments are designed to evaluate the label quality, data
collection rate, and flexibility of LUV compared to human
labeling. Due to the much faster rate of data collection, we
are able to increase the difficulty of several tasks compared to
prior work by considering more visually challenging scenes
including distractor objects. In all experiments, RGB data is
collected using a Zed M stereo camera. We use a U-Net [33]
in the towel corner detection task, and we use a ResNet50-
FCN [24] for the cable and needle tasks.

Evaluation Metrics: In the needle and cable segmentation
tasks, we compare the labeling quality and throughput of
LUV to human labeling. We report the average intersection
over union (IOU) between masks from LUV and from a
human labeler on a set of 10 training images. We also report
the average seconds per label (SPL) for a human labeler
and for LUV to annotate each of these images. We evaluate
the quality of the learned network on an unseen test set of
images in each domain containing only unpainted objects by
reporting the intersection over union (IOU) of the predictions
compared to human labels on these test images.

A. Towel Corner Detection for Smoothing and Folding

Predicting task-relevant keypoints using fully-
convolutional neural networks is a popular technique
in deformable manipulation applications such as fabric
smoothing [12, 36], t-shirt folding [12, 21], and cable
untangling [15, 40, 44]. Seita et al. [36] and Ganapathi



et al. [12] both predict keypoints corresponding to the
corners of a rectangular towel to implement a smoothing
policy that iteratively pulls identified corners away from
the towel. Both methods are trained on large datasets of
simulation data. In this experiment, we collect a dataset of
real images containing diverse colors of towels in different
configurations with a label on each corner of the towels.
We train a neural network to predict towel corners and later
use it in an algorithm that smooths and folds towels.

1) Experimental Setup and Assumptions: The workspace
contains an ABB YuMi robot, facing a tabletop with a black
tablecloth. We sample towels to place in the workspace from
a set of four, monochromatic, rectangular towels. We assume,
for this task, that no other objects are in the scene.

2) Task Definition: The goal of this task is to predict
masks corresponding to the corners of a towel in the
workspace from input images. The predicted masks are used
by a heuristic algorithm to smooth and fold the towel. We
attempt square double-folds and consider towels “folded” if
the final state of the towel can be pinched at the innermost
folded corner and shaken without disrupting the folds in the
towel, meaning 4 layers of cloth closely occupy the corner.

3) Data Collection: Self-supervised data collection is
a popular technique for training fabric manipulation poli-
cies [10, 16]. Data for this task is collected autonomously
by color thresholding the towel from the black background,
picking it up from a random point along the border, shaking it
in the air, and dropping it. Because this process often biases
towards crumpled states, we manually place the fabric in
smoother configurations and collect a small set of images in
more orderly configurations as well. Data is collected with
the ABB YuMi robot. The training dataset has 3640 images.

4) Smoothing and Folding Algorithm: Using the corner
outputs from the network, we implemented a heuristic al-
gorithm, to first smooth a crumpled towel then fold the
smoothed towel, shown in Fig. 7. The algorithm repeats
smoothing actions until it detects the towel is smoothed.
During each action, if no corner is detected, the robot
randomly resets the cloth by grasping at a random point,
shaking and dropping it. If only one corner is detected, the
robot grasps the visible corner, shakes it slightly and drags
it across the table to spread other corners out. If more than
one corner are detected, the robot grasps the pair of corners
closest to each other, lifts them up and flings them forwards
and back, flattening the towel. This process terminates when
4 corners are detected whose pairwise distances match the
size of the towel within a standard deviation of their mean.

After the towel is smoothed, as shown in Fig. 7 panel 3, the
locations of all 4 corners are measured and used to execute
an open-loop folding motion. First, the robot grasps the two
corners near the robot and puts them on top of the further two
corners. Then, a single arm grasps the short folded segment
and places it to match the antipodal one, completing the fold.

We use the depth output from the Zed stereo camera to
retrieve the 3D positions of the corners by taking the median
of deprojected depth points inside the network output mask,
and execute grasps using a fixed gripper orientation.

UV Lights

Camera

YuMi Robot

UV Label

UV Lights

Camera

Needle

dVRK 
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Fig. 5: Experimental Setups: We use LUV on two robot setups.
Left: The first, a bimanual YuMi robot, consists of 4 UV lights
oriented at different angles to mazimize UV coverage, with a
camera mounted between the arms to minimize arm occlusions.
All 4 UV lights are toggled with the same smart plug. Right: The
second, a dVRK surgical robot, has 2 UV lights and 2 visible LED
lamps which are each controlled by separate smartplugs. The UV
lights are turned on when the visible lamps are turned off and vice
versa.

5) Results: We evaluate the algorithm on towels in the
train set, with random initializations as in autonomous data
collection. We execute at most 10 smoothing actions before
considering the rollout a failure. Smoothing is successful if
it terminates autonomously and proceeds to folding.

Results are reported in table ??. Smoothing succeeds
on average 92% of rollouts across all towels, and folding
on average 83%. The majority of failure cases are from
manipulation challenges and the heuristic algorithm, such
as timeouts from repeated grasp failures, or looping because
the algorithm grasps diagonal corners over and over, rather
than corners detection failure.

B. Cable Segmentation

Prior work in cable manipulation [15, 40, 44] often
assumes that the cable is visually distinguishable from the
background via color segmentation. But cables in household
or industrial settings may not be chromatically distinct
from background objects. This motivates a learning-based
approach to predict cable segmentation masks from images.
However, labeling cable segmentation masks is extremely
tedious due to the complexity of cable configurations. We
apply LUV to the task of cable segmentation, and include
configurations with distractor objects and multiple cables in
the scene. Generating these complex segmentation labels via
LUV takes less than 178 ms per image (Table ??).

1) Experimental Setup and Assumptions: The workspace
contains a bilateral ABB Yumi robot. We sample cables
to place in the scene from a set of 2 micro-USB to USB
cables and a lightning to USB cable. We found that one of
the micro-USB cables is naturally fluoresces blue under UV
radiation without any painting, so we use this cable in both
the training and execution images since we do not paint it.
For the other cables, we use a painted version for training
images and an unpainted version for execution images. To
increase both the difficulty of the task and robustness of
the model, we place unpainted distractor objects in the
workspace. Several of the items are selected to contain
reflections and colors similar to the cables used. At execution
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Fig. 6: Network Predictions on Unseen, Test Images: We evaluate
the trained networks for each of the tasks on images unseen during
training. The input images are in the left column, and the right
column depicts the input images with the predicted segmentation
masks overlaid in green. To test generalization, some of the towel
images contain multiple towels, even though all of the training
images only had a single towel. The leftmost cable test image
contains two cables, even though all of the training images only
contained a single cable.

time, we introduce several novel distractor objects unseen in
training images.

2) Task Definition: The goal of this task is to predict a
semantic segmentation mask Iseg,cable corresponding to all
of the cables in an input image of the workspace.

3) Data Collection: We collect data separately for each
of the painted cables. We place each cable in the scene and
manually randomize its configuration, knot structure, and
position of the YuMi arms. We also randomly place distractor
items in the scene. We collect 486 labeled images.

4) Results: Due to the visual complexity of these scenes,
collecting human annotated images was extremely time con-
suming, with each image taking an average of 446 seconds to

Fig. 7: Towel Folding: During smoothing, we use corner predic-
tions from a trained network to implement a heuristic smoothing
algorithm. If one corner is visible, the robot drags the towel
sideways (1) from this corner to increase others’ visibility. If
multiple are visible, the robot grabs the two nearest corners (2) and
flings (3) across the table. When 4 detected corners are arranged in a
square, the robot executes a folding motion using corner positions to
compute grasp positions (4), leading to a neatly folded final product
(5). Detailed results are shown in table ??.

label (Table ??). LUV takes an average of 0.178 seconds to
annotate each image, which is 2511 times faster. Labeling all
of the image in the dataset with LUV takes about 87 seconds
in a single thread, whereas we estimate from Table ??
that labeling all of the collected images would take over
446 × 486 = 60 hours for a human annotator. We find that
the mean IOU between LUV labels and human labels on
10 training images is 0.787 (Table ??) and the mean IOU
between the LUV-trained segmentation network and human
labels on a test set of 10 images is 0.755 (Table ??).

C. Needle Segmentation

Segmenting surgical needles in images is a common
perception task in surgical robotics research. Some prior
works rely on painting the needle and performing color
segmentation [3, 38, 45] or assuming that the rest of the scene
is visually distinct from the needle [42]. Recent work uses
fully-convolutional neural networks to predict these masks,
using a combination of simulation and real data [45], but
restrict their task to black backgrounds. In this task, we
apply LUV to needle segmentation in the presence of tissue
phantoms and distractor objects in the scene.

1) Experimental Setup and Assumptions: We collect data
in a workspace with a bilateral da Vinci Research Kit surgical
robot and an inclined Zed M stereo camera. We collect
training data using a set of 2 surgical needles and test data
using unpainted versions of these needles. In contrast to prior
work, which considers a pristine black background for color
segmentation [45], we increase the difficulty and realism of
the task by randomly placing surgical phantoms, training
equipment, and tools in the scene.

2) Task Definition: The goal of this task is to predict a
semantic segmentation mask for all surgical needles.

3) Data Collection: Unlike [45], we exclusively train
methods on real data, and we use their self-supervised data
collection policy to move the needle around the workspace



IOU SPL (human) SPL (LUV)
Towel Corner Detection (Train) N/A 22.5 0.125
Cable Segmentation (Train) 0.787 446 0.178
Needle Segmentation (Train) 0.683 40 0.221
Cable Segmentation (Execution) 0.755 N/A N/A
Needle Segmentation (Execution) 0.666 N/A N/A

TABLE I: Labeling Technique Comparison: We evaluate LUV
on a set of 3 robot perception tasks. Top half: We compare the
consistency of the UV training labels with human labels as a
measure of label quality by comparing their intersection over union
(IOU). We report the seconds per label (S.P.L) for both a human
labeler and LUV. On the segmentation tasks, we observe that the
training masks for LUV have an IOU of 0.787 and 0.683 with
respect to human labeled masks. Because the cables and needles
are very thin, small discrepancies can significantly impact the IOU
score negatively, and the labels were also challenging for a human
to label. On the needle task, we quantify label quality by using
them for pose estimation in Table ??. We observe that LUV takes
180-2511× less time than the human to label images. Labeling the
entire cable dataset by hand would take approximately 60 hours,
whereas it takes LUV 87 seconds in a single-thread. Bottom half:
We evaluate the models trained with LUV labels on unpainted test
images and compare the predictions to human labels. We find that
the predictions have an average intersection over union (IOU) of
0.755 and 0.666 on the two tasks. Because cables and needles have
thin segmentation masks, small discrepancies with respect to human
labels can lead to large negative drops in IOU.

Towel No. Smooth Action Smooth Success Fold Success
Blue 4.4± 1.95 83% 67%

Green 5.0± 3.16 100% 100%
White 1.8± 0.41 100% 100%
Yellow 4.0± 2.91 83% 67%
Average 3.7± 2.52 92% 83%

TABLE II: Smoothing and Folding Results. For each towel, 6
trials are conducted with random initial states leading to 24 trials in
total. Mean and standard deviation of number of smoothing actions,
smoothing and folding success rate are reported.

when grasped by the robot’s end effector. We periodically
insert, remove, and move surgical tissue phantoms in the
background like silicone suture practice pads and simulated
gut. We use the da Vinci Research Kit for data collection.
The needle dataset consists of 1364 images, with infrequent
human interventions to periodically change the poses of the
needle in the gripper and the background objects.

4) Results: We compare the annotations generated by
LUV to human annotations on a set of 38 training images.
The mean IOU between the segmentation masks in the
two sets is 0.683. We train a segmentation network whose
prediction has a mean IOU of 0.666 with respect to human
annotations on an unpainted test set of 20 images. While
this seems relatively low, this is due to the very thin profile
of needles, and slight variations in the human and LUV
annotations can significantly affect IOU. The masks are
qualitatively very similar as shown in Fig. 4, and we quantify
this by running the needle pose reconstruction algorithm
from Wilcox et al. [45] on stereo images in both the training
and test set. We limit test images to those where both tips
of the needle are visible. The resulting average pose error
between labels from LUV and humans is 1.7mm and 6.9◦,
and the pose error on the test set between network outputs

Position Difference(mm) Rotation Difference
Training Labels 1.7mm 6.9◦

Test Predictions 1.7mm 8.8◦

TABLE III: LUV Needle Pose Estimate Consistency. Top Row:
We use the training needle masks (Training Labels) generated by
the UV labels to estimate the needle’s pose using the 3D needle
pose reconstruction algorithm from Wilcox et al. [45]. We compare
the pose to the pose generated by human labels of the training
images. We find that the pose estimate is within 1.7mm and 6.9◦

the poses generated by human labels on average. In this test, we
ensure that the images do not contain the needle in pathological
cases, as described in Wilcox et al. [45]. Bottom Row: We evaluate
the trained network predictions on test images in the same way, and
find that the resulting average pose estimate is within 1.7mm and
8.8◦ of the pose generated by the human labeled segmasks.

and human labels is 1.7mm and 8.8◦.

V. DISCUSSION

We present Labels from UltraViolet (LUV), a framework
for collecting segmentation labels and keypoints without
human labeling. LUV can be applied to augment existing
self-supervised dataset collection techniques in robot manip-
ulation domains. In future work, we hope to investigate other
applications of LUV, such as using fluorescent markers to
obtain object poses, detecting garment edges, or using UV
markers for online dense reward assignment in RL tasks. In
addition, LUV could be extended to produce a larger diverse
dataset of fabric annotations on RGB images.
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