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Abstract— In this work, we present SUFIA, the first frame-
work for natural language-guided augmented dexterity for
robotic surgical assistants. SUFIA incorporates the strong
reasoning capabilities of large language models (LLMs) with
perception modules to implement high-level planning and low-
level control of a robot for surgical sub-task execution. This
enables a learning-free approach to surgical augmented dexterity
without any in-context examples or motion primitives. SUFIA
uses a human-in-the-loop paradigm by restoring control to
the surgeon in the case of insufficient information, mitigating
unexpected errors for mission-critical tasks. We evaluate SUFIA
on four surgical sub-tasks in a simulation environment and two
sub-tasks on a physical surgical robotic platform in the lab,
demonstrating its ability to perform common surgical sub-tasks
through supervised autonomous operation under challenging
physical and workspace conditions.
Project website: orbit-surgical.github.io/sufia

I. INTRODUCTION

Recently, one prominent trend in surgery has been the
increasing adoption of robotic surgical assistants (RSAs) in
operating rooms. These RSAs are often controlled via local
or remote teleoperation through a console by a trained human
surgeon using hand controllers or other input peripherals,
thereby enabling the surgeon to perform tasks with enhanced
precision, dexterity, and control during an operation [1]. The
teleoperated surgical procedures often involve tedious, repeti-
tive, or time-consuming sub-tasks. Augmented dexterity in
surgery holds the potential to simplify the surgical workflow,
reduce surgeon fatigue, and improve patient outcomes [2],
[3].

Learning-based approaches such as reinforcement and
imitation learning learn policies to solve specific surgical sub-
tasks [4], [5]. However, complex, long-horizon surgical sub-
tasks are often computationally expensive, require extensive
domain knowledge and reward engineering, and involve
time-consuming dataset curation. Furthermore, the lack of
generalizability limits the utility of learning-based models in
safety-critical applications where unseen, in-domain variations
are prevalent. As a result, most surgical robotic platforms
still lack any level of autonomous capabilities [6].

In recent years, Large Language Models (LLMs) have
received considerable attention for their ability to respond
naturally to textual prompts and have been integrated into var-
ious domains, including the field of robotics and autonomous
agents [7]. Language and vision models have demonstrated
considerable promise in long-horizon robot planning and
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Fig. 1: An overview of SUFIA automating the lifting of a
suture needle from a surgical site. SUFIA receives commands
from a surgeon in natural language and converts them to high-
level planning and low-level control code. If a task requires object
interaction, SUFIA queries a perception module for object state
information and generates low-level trajectories and robot actions
accordingly. SUFIA can assist a surgeon with open-ended tasks,
such as moving the robot in a desired motion to help complete a
surgical task. In times of inefficient information, SUFIA delegates
full control back to the surgeon.

control [8], [9], [10]. While these efforts still require pre-
trained skills and motion primitives, they have demonstrated
the potential of unified many-modality models for addressing
a variety of complex tasks involving improved generalization
to novel objects and unseen tasks.

In surgical settings, LLMs have the additional potential
to aid interaction between a human surgeon and a robot via
natural language teleoperation. This empowers the surgeon
with the ability to use both fine-grained manual control
and autonomous natural language conversational control in
commanding the RSA to perform a sub-task. This approach
promises both more natural human-robot coordination and
the potential for developing general-purpose models for
autonomous surgery beyond the capability of current task-by-
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task automation approaches.
In this work, we present SUFIA (Surgical First Interactive

Autonomy Assistant), a framework for natural interaction
between a human surgeon and a surgical robot to provide
interactive surgical autonomy. As shown in Fig. 1, SUFIA
takes in sub-task commands from a surgeon and outputs
a high-level natural language task plan, as well as low-
level Python code snippets for execution, if requested. A
perception module grounds perceived surgical objects in the
scene regardless of variations in shape, size, and pose and
accounts for the characteristics of their often small, slender
shapes. SUFIA also incorporates re-planning and human-in-
the-loop control as safety measures. Our primary contributions
are as follows:
• A general formulation for natural language interaction

between a surgeon and a robot.
• A language-based control approach to facilitate surgical

sub-task implementations.
• A systematic evaluation of the generalization of our

approach to various surgical sub-tasks, showing its per-
formance and robustness for challenging workspace condi-
tions.

II. RELATED WORK

A. Large Language Models for Robotics

Large Language Models (LLMs) are state-of-the-art nat-
ural language processing systems built on the transformer
architecture [11]. LLMs are pre-trained with self-supervised
objectives on vast amounts of text corpora, enabling these
models to exhibit impressive language understanding and
generation capabilities and perform a wide range of tasks.
They are typically further fine-tuned with labeled data and
RLHF to create general-purpose assistants [12], [13] or more
specialized models for use cases such as coding [14], [15]
or report generation [16].

In robotics, LLMs have been recently employed to address
the high-level planning aspect of robotic control [17], [18].
These models still require trajectory generators through cost
or reward functions to compute the trajectory. Other works
focused on leveraging LLMs to design reward functions [19],
[20] to acquire complex skills via reinforcement learning.
However, most of these research works perform well on
predefined tasks and still require expensive training time
to generalize. Building on a recent work [21] that revealed
the potential of LLMs to directly reason trajectory paths for
robot arms, SUFIA incorporates LLMs to directly control
the gripper poses to perform surgical sub-tasks. This enables
the surgeon to naturally interact with the robot by asking
for a complete task (e.g., pick the needle, insert the soft
tube) or an open-ended task (e.g., move the needle in semi-
circular motion) to help complete a sub-task. Our work
differs from [21] in that we do not rely on a separate object
detector for validation, incorporate further safety mechanisms
by delegation, and show results for surgical scenes, where we
additionally study domain-relevant axes such as variations in
needle shape.

B. Surgical Augmented Dexterity
Augmented dexterity has been attempted for several sub-

tasks with varying levels of autonomy [22], [23], [6] such as
dexterous needle picking and handling [24], [3], suturing [2],
[25], and tissue manipulation [26], [27], [28]. In particular,
in contrast to full automation, an often-explored paradigm
in surgical robotics is augmented dexterity [29], in which
minimal surgical sub-tasks are automated under human
supervision, enabling more precise actuation with less effort
expended.

However, these works largely rely on access to expensive,
task-specific surgical hardware and software. In order to
enable wider exploration of robotic automation in surgery,
prior work has often focused on reducing the hardware barrier
by adapting traditional robotic arm geometries for medical
sub-tasks [30], [31], or designing novel, lower-cost, multi-
purpose medical robotic systems [32], [33], [34]. Additionally,
learning robust perception and control models for surgical
tasks often requires gathering very large and expensive in-vivo
datasets to avoid safety-critical failure cases [35], [36]. In
this work, we propose an alternate approach to this software
barrier by relying on a general-purpose, natural language-
guided framework for surgical augmented dexterity across
multiple tasks.

III. PROBLEM FORMULATION

We focus on a novel approach to surgical augmented
dexterity. In contrast to previous methods, we are investigating
the potential of a generalist framework using large language
models to address surgical augmented dexterity rather than
training individual models for isolated tasks. We now briefly
detail the assumptions with respect to the environment and
available tools in our work. We do not provide any policies,
trajectory optimizers, or in-context examples to the LLM [21].
Instead, we expect the LLM to reason over automating a
benchmark simulated surgical sub-task with their internal
knowledge and access to limited environment information
through pre-defined function calls available in an API. All
of our experiments are carried out on the da Vinci Research
Kit (dVRK) robot platform [33]. The initial position and
orientation of the dVRK grippers are available from the robot
controller.

We assume access to a single RGB-D camera with a known
intrinsic matrix, allowing for transformation between the
camera’s perspective and the world coordinate space. With
this, we design a perception module for the LLM to interact
with and query object information. This module identifies
and retrieves the pose information of objects present in the
scene. For this, in simulation, we assume access to an instance
segmentation model that, given an object name, outputs the
segmentation maps of all instances of the queried object. In
the physical experiments, we train a segmentation network
based on the architecture from [37] for a needle segmentation
model.

IV. SUFIA
We propose SUFIA, a framework for natural interaction

between surgeons and robots. SUFIA uses a human-in-the-
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Fig. 2: SUFIA architecture and work-
flows. SUFIA enables a surgeon to nat-
urally interact with the robot by either
asking for a complete sub-task (e.g. “pick
up the needle and hand it over to the
other arm”) or generating a trajectory to
help with performing a task (e.g. “move
the needle 1 cm to the left”). SUFIA uses
limited environmental knowledge in nat-
ural language (i.e. System Prompt) and
scene understanding from a perception
module to directly generate high-level
plans and low-level sequences of gripper
poses to interact with small-scale surgical
objects. If SUFIA encounters difficulty
in querying for an object or executing
a necessary step to solve the surgical
sub-task, it hands the control back to the
surgeon for teleoperation.

loop approach, allowing either complete sub-task autonomy
or assistance in open-ended tasks to help surgeons achieve
their desired goals. The architectural framework, workflow,
and primary elements of SUFIA are shown in Fig. 2. The
following sections elaborate on the specifics of SUFIA.

A. LLM Generation and Planning

Crucial to the effectiveness of any LLM-based system is
the design of the prompt, as only changing the prompt format
can already lead to large differences in performance [38]. We
build upon [21] who developed a single task agnostic prompt
for performing low-level robot control for object grasping.
We adapt it for surgical augmented dexterity with a four-part
prompt, which consists of a role description and three core
parts: the first part contains the API library available to the
LLM; the second provides limited environment information
(e.g. the state of the robot(s) to control and the orientation of
the coordinate system); the third provides general instructions
on how the LLM should generate the code, including the
format of the desired output; the fourth describes prompt
optimizations such as doing step-by-step reasoning [39].

B. API Library

The LLM has access to a library of functions that are
available through an API. This API is documented in the main
prompt, where for each function, its signature is given along
with a brief description of its functionality [21], [40]. The
API library mainly manages interaction with the robot control
and perception modules. The modular approach with the API
provides SUFIA the flexibility to adapt its respective modules
independently, enabling integration into new embodiments and
environments, such as switching from simulation to physical
experiments.

Specifically, the API library includes robot control func-
tionalities to execute a trajectory, rotate or open/close the
gripper of the specified robot arm, and return the control
back to the surgeon. Furthermore, perception functions detect
the world poses of objects within the environment and can
validate whether an object is at the expected position.

C. Perception

While LLMs lack the capability to ground physical
worlds [41], they can still reason over the required steps
to interact with objects and plan for task execution. To do so,
we design a perception module that enables the processing
of observations of the environment obtained from a single
RGB-D camera to provide the object states to the LLM
generator. This workflow is enabled by the API function
detect_object, through which the LLM queries and interacts
with the perception module to retrieve object information.

detect_object takes as input the name of the object to
detect. After obtaining a segmentation of the named object
and projecting it to world coordinates with the camera intrinsic
matrix, we compute the 3D bounding cube and obtain the
location and orientation. Moreover, for circular objects such
as needles, we fit RANSAC to provide the object parameters
and compute candidates for the location and orientation of a
suitable interaction point.

D. Safety

A critical issue in surgical robotics is the reliability and
safety of the robot control. To this end, we implement two
components tailored to improve these aspects:
1) Re-planning. The original plan could become inappro-

priate due to, for example, mistakes in the planning or
unforeseen circumstances, such as the gripper losing grip
on the needle, in which case a new plan has to be devised.
We encourage SUFIA to repeatedly use the verify_object
function to check whether the observed position of a given
object matches the position expected by the framework. If
the object being manipulated is not in the expected place,
SUFIA re-plans the steps to complete the desired task
given the updated knowledge of the environment.

2) Human-in-the-loop approach. In some cases, the per-
ception module cannot find the desired object. In this
case, rather than continuing blindly, SUFIA proceeds by
handing control back to the surgeon for teleoperation
with the API function transfer_control. SUFIA is also
instructed to call this function when it does not know
how to solve a certain (sub-)task rather than operating on



insufficient information. Fig. 6 illustrates an instance when
the system is unable to execute a command properly and
returns the control to the surgeon to adjust the environment
or provide further instruction.

Together, these two components enhance the safety and
reliability of the assistant, which is crucial in the domain
of surgical robotics. Note that the surgeon can also directly
instruct SUFIA to re-take control of the robot, ensuring a
smooth interplay between surgeon and robot.

V. EXPERIMENTAL RESULTS

To empirically measure the efficacy of SUFIA, we perform
experiments both in ORBIT-Surgical, a high-fidelity surgical
simulation framework, and on a dVRK platform in the lab.

A. Experimental Setup
We conduct our simulation experiments in ORBIT-

Surgical [42], which accurately imitates joint articulation
and low-level controllers of the real dVRK platform, sup-
ports contact-rich physical interactions between rigid and
deformable objects, and provides high-fidelity rendering.
Furthermore, ORBIT-Surgical provides an interface for tele-
operation, which enables the user to work together with
SUFIA to solve a sub-task if needed. We use a camera
sensor in NVIDIA Omniverse to acquire 512× 512 rendered
RGB-D images and ground-truth semantic segmentation
masks. In section V-E, we will discuss the utility of general
segmentation models to adapt the workflow to objects with
various configuration in simulation.

Physical experiments are performed on a da Vinci Research
Kit (dVRK) [33] robot surgical assistant, using an Allied
Vision Prosilica GC 1290 stereo camera pair for visual input.
These cameras are capable of producing paired stereo frames
at a resolution of 1280 × 960 at 33 fps. Real-world depth
images are then subsequently obtained by passing image pairs
through RAFT-Stereo RVC [43], a state-of-the-art network for
predicting image correspondences using optical flow, and then
using the camera’s calculated intrinsic matrix to retrieve depth
from these point discrepancies. We find that this approach
provides better empirical results than traditional depth cameras
in our use case due to the small, reflective objects and short
focal lengths involved in the surgical setting. To emulate the
real-world conditions encountered in a surgical setting, our
workspace consists of a 3-D Med suturing tissue phantom
on a red background. The phantom is then wrapped in blue
cloth to imitate the use of a surgical cover during operation.
These physical experiments introduce additional challenges,
including a more challenging perception task, estimation and
control noise, and more complex physics.

Throughout this section, we use GPT-4 Turbo [12] unless
stated otherwise.

B. Tasks and Evaluation Metrics
We demonstrate the generalizability of SUFIA by evaluat-

ing it across four distinct simulated surgical sub-tasks derived
from ORBIT-Surgical, as shown in Fig. 3. We additionally
select two of the subtasks (Needle Lift and Needle Handover)
for evaluation using our physical setup. Each sub-task poses

(a) (b)

(c) (d)

Fig. 3: Surgical sub-tasks. (a) Needle Lift: lift a suture needle
to a desired height, (b) Needle handover: pick and handover
a suture needle, (c) Vessel Dilation: grip the vessel rim and
dilate by pulling, (d) Shunt Insertion: insert a soft tube into
larger vessel phantom. Best viewed in color.

unique challenges to show the robustness of the proposed
workflow, described as follows:
Needle Lift – In this task, the needle (N1 in Fig. 5)

is initialized at a random position and orientation within the
reach area from a single dVRK arm. The task is successful
if the robot grasps and lifts the needle to a specified height
above the table.
Needle Handover – This task involves transferring a

needle using a dual-arm dVRK setup. The needle is initially
positioned randomly. The arm closest to the needle first grasps
and lifts it to a specified handover location. Subsequently,
the second arm reaches for the needle, grasps it, and takes it
to a desired position. The task is successful if the needle is
effectively transferred from the initial to the second arm.
Vessel Dilation – In this task, a spring clamp

assembly holds a soft vessel phantom from two points. The
dVRK arm is required to grip the vessel rim from a third point
facing the robot and dilate the vessel by pulling backward. A
successful trial is defined if the robot fully dilates the vessel.
Shunt Insertion – This task requires using a dVRK

gripper to insert a shunt into a vessel phantom. The arm grasps
the shunt from the middle, lifts it slightly, and then inserts
it into a vessel phantom. The task is considered successful
if, upon release by the grippers, the shunt remains inside the
vessel phantom.
C. SUFIA Evaluation

We now discuss the effectiveness of SUFIA on solving
the proposed surgical sub-tasks. SUFIA utilizes a perception
module to localize the objects and proposes a sequence of
sub-trajectories to perform the required task. We present
the success rate for each sub-task for 10 trials in TABLE I.
Overall, SUFIA is able to solve all proposed surgical sub-
tasks requiring precise grasping of small surgical objects in
simulation. Each task poses a unique challenge for automation,
including object-gripper alignment and executing many steps
to achieve successful results. In the Vessel Dilation
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Fig. 4: Physical Needle Handover task. (1) Starting workspace configuration. The needle is placed in a fixed position within the
workspace, and the gripper positions are randomized. In this stage, the SUFIA LLM planner queries for and identifies the pose of the
suture needle, determines which robot arm is closest to it, and plans a trajectory for that robot arm to reach the suture needle. (2) The
closest robot arm approaches and grasps the suture needle. (3) The suture needle is lifted to a neutral handover position. At this stage, the
SUFIA LLM planner detects the pose of the suture needle at the handover position and plans a trajectory for the second robot arm to
approach the needle. (4) The second robot arm descends and grasps the needle, then the first robot arm releases the needle after the second
robot arm has grasped it. We provide task videos at orbit-surgical.github.io/sufia

Failure ModesExperiment Success Rate Planning Steps
(P) (E)

Sim Experiments

Needle Lift 100 % 6 0 0

Needle Handover 90 % 14 - 16 1 0

Vessel Dilation 60 % 6 - 8 3 1

Shunt Insertion 70 % 8 - 9 3 0

Physical Experiments

Needle Lift 100 % 6 0 0

Needle Handover 50 % 14 - 18 2 3

TABLE I: Evaluation Success rate and planning steps required
for surgical sub-tasks automation (10 trials for each experiment).
Failure modes: (P) denotes planning and (E) denotes execution
failures. Sim experiments are carried out in ORBIT-Surgical, a high-
fidelity surgical simulation framework. Physical Experiments are
performed on a dVRK surgical platform.

task, all planning failures were due to not rotating the
grippers to grasp the vessel’s rim correctly. In the Shunt
Insertion task, the planning failures were from incorrect
lift height calculations before insertion.

We observed that the performance of SUFIA was relatively
robust to the more complex physics and observation spaces
of the physical environment, with 0 and 2 planning fail-
ures encountered during the Needle Lift and Needle
Handover experiments, respectively. This aligns closely
with the framework’s performance in simulation. However, we
found that hysteresis and encoder mismatch within the cable-
driven dVRK resulted in variation between the commanded
and actual gripper positions. Although SUFIA was often
able to recover from the failures induced by this mismatch
through its re-planning behavior, the lack of explicit servoing
can result in dropping the needle during more complicated
handovers.

D. Task Prompt Analysis
Simple tasks such as Needle Lift require a simple

prompt to function properly. The surgeon can specify a
position to transfer the needle to or allow the LLM to

determine a specific lift height above the table.
More sophisticated prompts are needed for tasks that re-

quire several steps for successful completion. In the Needle
Handover task, the surgeon can provide additional notes
for SUFIA to consider (e.g., "please note that for a handover,
each robot should grasp the needle from the side closest to
it."). The sequence in which the robot arms grasp and hand
over to each other, as well as the location of the handover, can
either be specified directly or left for the SUFIA to decide
based on the distance to the needle or other environmental
states.

The SUFIA planner may suggest unnecessary steps that
may not be required for task completion and may potentially
elongate task execution time. For instance, in the Vessel
Dilation task, the vanilla prompt for dilating a vessel can
sometimes lead to an additional step of "Lift the vessel slightly
by moving the end-effector upwards to provide clearance from
the table." The surgeon can provide additional information
about the fact that the clamps are holding the vessel vertically
to eliminate the suggestion of lifting steps in dilating the
vessel. Similarly, in the Shunt Insertion task, additional
information such as "please lift the small tube by a specific
amount off of the table and horizontally insert it" helps to
achieve better planning and execution.

Vision language models (VLMs) can also be incorporated
in SUFIA to enhance the general visual understanding of the
LLM planner. For instance, in the Vessel Dilation task,
GPT4-Vision [12] can provide the planner with environmental
context regarding the orientation of the vessel phantom. In
this example, the VLM response can complement the user
prompt: I see a vertical yellow tube on the
right side of the image. It appears to
be standing upright on one of its ends
on a flat surface. While useful for providing
general visual context, similar to [44], we find GPT4-Vision
unreliable as a standalone perception module for detecting
(small) objects’ spatial states and omit it for the remainder
of our experiments.

The prompts used for the tasks are as follows:
Needle Lift – "Pick up the needle and lift it."

https://orbit-surgical.github.io/sufia


(N1) (N2) (N3)

(N4) (N5)

Fig. 5: Needle variations in simulation. We consider five instances
of simulated suture needles (N1 - N5) with various sizes and shapes
to conduct the generalizability experiment in ORBIT-Surgical.

Needle Handover – "Pick up the needle with the arm
closest to it, move it directly to the handover location between
the two arms, and keep holding the needle. Grasp the right
side of the needle with the other robot arm, then right after
that, release the needle from the first robot and stay put."
Vessel Dilation – "Grasp the vessel from its leftmost
side with robot 0 and pull it backward to the left by 5
millimeters while holding on to it to dilate. When grasping
the vessel, grasp it 15 millimeters below the left point."
Shunt Insertion – "Lift the small shunt from the middle
and insert it into the left opening of the large tube. Approach
the large tube from the left. Only lift the tube by 8 millimeters
and move horizontally to insert."
E. Perception Adaptation and Domain Variation

While we envision domain-specific perception models for
applications of our framework in a given surgical environment
(e.g., a needle segmentation network in our real-world
physical experimentation), here we investigate whether a
general-purpose segmentation model, LangSAM [45], can
be utilized by the perception module in simulated surgical
environments to enhance the generalizability of the SUFIA
framework to various object shapes.

We found that due to the slender shape of dVRK
arms, the use of LangSAM in the perception module
sometimes returned both the dVRK arm and the suture
needle when prompted to find the "needle." However,
descriptive adjectives (e.g. "round" or "small white needle")
enable LangSAM to correctly identify and segment the
suture needle well enough for SUFIA to generate the
required steps to grasp and lift it. GPT-4 was also able to
reason over the sizes of the segmented objects and properly
determine the object of interest; here is an example of the
LLM planner: "there are two objects detected
as "white needle," but only one of them
has dimensions that match a needle
(Width: 0.011, Length: 0.032, Height:
0.002). The second object’s dimensions
are too large to be the needle we are
interested in. Therefore, we will focus
on the first object with the correct
dimensions."

To study the generalizability of the perception module
across various needle sizes and shapes, we conduct a study
with five different needles, three needles in different sizes (N1

Perception Module N1 N2 N3 N4 N5

Isaac Sim Camera 5 / 5 4 / 5 5 / 5 5 / 5 4 / 5
LangSAM 4 / 5 5 / 5 4 / 5 3 / 5 3 / 5

TABLE II: Domain variation evaluation in simulation. We report
the success rates for lifting suture needles with varied sizes and
irregular shapes (suture needles N1 - N5) over 5 trial runs with two
variations of the perception module.

- N3; Fig. 5) and two irregular shapes (N4 and N5; Fig. 5).
TABLE II shows the performance of SUFIA to lift various
needles, which is robust to their shape and size.

F. LLMs Investigation

Here, we investigate the effect of different LLMs on the
performance of the needle lift task. We use the same prompt
and needle locations for all LLMs. As the error handling in
SUFIA would, in principle, allow an LLM to keep trying
endlessly until it generates code where no exceptions are
raised, we limit the number of errors to five before terminating
the program.

None of the open-source LLMs can perform the simple
task of needle picking and have a hard time following
the instructions in the prompt. All models struggle with
understanding that detect_object() will print its result
rather than return it as a variable in a Python script. When
faced with errors, Mixtral [46] typically only outputs updated
code snippets when asked to improve a code block rather
than the whole code. CodeLlama [15] calls many undefined
functions, such as get_end_effector_pose(), despite
the end-effector pose being given in the prompt. Llama 2 [47]
has a variety of mistakes related to understanding the steps
in the task, such as forgetting to close the gripper or moving
it down before lifting the needle.

GPT3.5 Turbo similarly misunderstands
detect_object(), often assigning its value to a
variable called needle_position, despite the prompt
stating the function does not return anything. Beyond that,
GPT3.5 Turbo does consistently define a proper plan to
lift the needle, but even when it calls detect_object()
correctly, the information is not incorporated successfully.

All in all, in our experiments, only GPT-4 Turbo could
follow all instructions and appropriately plan and execute the
relatively simple task of lifting a suture needle.

G. Re-planning

To illustrate the benefits of our safety modules, we provide
an example in the Needle Lift environment in Fig. 7.
In the first row, SUFIA executes the plan it came up with
to perform the task desired by the user, i.e., orienting its
gripper with the needle, moving to a position where it can
grab it, and picking it up. While picking it up, we move the
needle to a different position. Because SUFIA validates the
expected and observed position of the objects it manipulates,
it correctly identifies the needle is not where it should be.
Based on the newly observed state, SUFIA devises a new
plan to proceed with the user instruction, finally lifting it to
the desired height.



SuFIA LLM Planner: To begin the task of finding the suturing site, I will first need to detect 
the location of the suturing site within the environment. I will call the `detect_object` function 
with the parameter "suturing site" to obtain its position.
```python
detect_object("suturing site")
```

System execution output: Object not found!

SuFIA LLM Planner: Since the "suturing site" object was not found in the environment, I 
will defer control to the surgeon to provide further instructions or to adjust the environment so 
that the suturing site can be detected.
```python
transfer_control()
```

Control of the robot is transferred to the Surgeon.(a) (b)

(c)
Surgeon: Please find the suturing site.

Fig. 6: Interactive human-in-the-loop approach. (a) An overview of the environment showing the dVRK robotic arm and endoscope
camera as well as a needle and a suturing pad in ORBIT-Surgical, (b) RGB image from the endoscope camera focused on the needle as
input to the perception module, (c) delegation of control back to the surgeon due to the inability of the system to identify a suturing site.
The uncertainty and occlusion in a surgical scene might lead to undesired object localization and retrieval. A human-in-the-loop approach
enables a fail-safe paradigm for interactive robotic surgical assistants.

LLM Function Call for Verification:
# Verify that the needle has been picked up and 
lifted
verify_object("needle", lifted_position, 0.015)

Function Output:
verify_object output: False

LLM Planner:
The verification step has returned `False`, indicating that 
the needle has not been successfully picked up and lifted 
to the specified position. Therefore, I will need to re-open 
the gripper and plan a new trajectory to complete the task.

LLM Function Call for Verification:
# Verify that the needle has been picked up and 
lifted
verify_object("needle", lifted_position, 0.015)

Function Output:
verify_object output: True

(a) Failed execution

(b) Re-planning and successful 
execution

Fig. 7: Re-planning. (a) A failed execution as a result of not
finding a proper grasping point on the needle. The LLM verification
step indicates that the task was not executed successfully. (b) LLM
planner proposes a new plan to re-identify and lift the needle by
the robot.

H. Limitations

The current best results are obtained with API calls to
GPT-4 Turbo. Due to the generation speed of OpenAI’s
API, SUFIA does not operate in real-time; for real-world
needle handover trials, the API calls invoked during planning
(including sensing and replanning) took an average of 25.5
seconds to complete, out of an average total trial time of
61.4 seconds. However, with open-source models constantly
improving, running a quantized open-source LLM on-device
will soon be a viable way to improve inference time greatly.

Moreover, while we incorporate two measures specifically
designed to improve safety and reliability, deploying au-
tonomous or semi-autonomous RSAs in real-world scenarios
still has the potential to bring risks from unexpected circum-
stances an AI system might not be able to handle.

VI. CONCLUSION

We present SUFIA, a modular framework for natural
surgeon-robot interaction. We show that our training-free
approach, which uses pre-trained LLMs to provide low-level

control of surgical robots, can successfully interact with
small surgical objects and execute surgeon commands for
automating surgical sub-tasks. Safety is bolstered through
re-planning capabilities and a human-in-the-loop approach.
We evaluate the efficacy of SUFIA for common surgical
sub-tasks in simulated and physical experiments in the lab
and show that the proposed method succeeds across different
sub-tasks with various difficulty levels. These results suggest
that language-guided autonomy has the potential to enhance
surgeon’s efficiency in surgical procedures.

In future work, we plan to test the viability of quantized
open-source LLMs on-device to improve inference time.
This will also address any privacy concerns stemming from
transmitting highly sensitive medical information to off-site
servers. Furthermore, we intend to explore the usefulness of
fine-tuned large language and vision models in SUFIA.
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